Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Jan Funke Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4085 Publications

Showing 3961-3970 of 4085 results
10/19/15 | Variable primary coordination environments of Cd(II) binding to three helix bundles provide a pathway for rapid metal exchange.
Tebo AG, Hemmingsen L, Pecoraro VL
Metallomics. 10/2015;7:1555 – 1561. doi: 10.1039/c5mt00228a

Members of the ArsR/SmtB family of transcriptional repressors, such as CadC, regulate the intracellular levels of heavy metals like Cd(II), Hg(II), and Pb(II). These metal sensing proteins bind their target metals with high specificity and affinity, however, a lack of structural information about these proteins makes defining the coordination sphere of the target metal difficult. Lingering questions as to the identity of Cd(II) coordination in CadC are addressed via protein design techniques. Two designed peptides with tetrathiolate metal binding sites were prepared and characterized, revealing fast exchange between CdS3O and CdS4 coordination spheres. Correlation of (111m)Cd PAC spectroscopy and (113)Cd NMR spectroscopy suggests that Cd(II) coordinated to CadC is in fast exchange between CdS3O and CdS4 forms, which may provide a mechanism for rapid sensing of heavy metal contaminants by this regulatory protein.

View Publication Page
11/14/14 | Variance predicts salience in central sensory processing.
Hermundstad AM, Briguglio JJ, Conte MM, Victor JD, Balasubramanian V, Tkačik G
eLife. 2014;3:. doi: 10.7554/eLife.03722

Information processing in the sensory periphery is shaped by natural stimulus statistics. In the periphery, a transmission bottleneck constrains performance; thus efficient coding implies that natural signal components with a predictably wider range should be compressed. In a different regime--when sampling limitations constrain performance--efficient coding implies that more resources should be allocated to informative features that are more variable. We propose that this regime is relevant for sensory cortex when it extracts complex features from limited numbers of sensory samples. To test this prediction, we use central visual processing as a model: we show that visual sensitivity for local multi-point spatial correlations, described by dozens of independently-measured parameters, can be quantitatively predicted from the structure of natural images. This suggests that efficient coding applies centrally, where it extends to higher-order sensory features and operates in a regime in which sensitivity increases with feature variability.

View Publication Page
07/01/07 | Variation in fiber number of a male-specific muscle between Drosophila species: a genetic and developmental analysis.
Orgogozo V, Muro NM, Stern DL
Evol Dev. 2007 Jul-Aug;9(4):368-77. doi: 10.1111/j.1525-142X.2007.00174.x

We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.

View Publication Page
Singer Lab
06/26/11 | Variegated gene expression caused by cell-specific long-range DNA interactions.
Noordermeer D, de Wit E, Klous P, van de Werken H, Simonis M, Lopez-Jones M, Eussen B, de Klein A, Singer RH, de Laat W
Nature Cell Biology. 2011 Aug;13(8):944-51. doi: 10.1038/ncb2278

Mammalian genomes contain numerous regulatory DNA sites with unknown target genes. We used mice with an extra β-globin locus control region (LCR) to investigate how a regulator searches the genome for target genes. We find that the LCR samples a restricted nuclear subvolume, wherein it preferentially contacts genes controlled by shared transcription factors. No contacted gene is detectably upregulated except for endogenous β-globin genes located on another chromosome. This demonstrates genetically that mammalian trans activation is possible, but suggests that it will be rare. Trans activation occurs not pan-cellularly, but in 'jackpot' cells enriched for the interchromosomal interaction. Therefore, cell-specific long-range DNA contacts can cause variegated expression.

View Publication Page
01/01/08 | Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster.
Ni J, Markstein M, Binari R, Pfeiffer B, Liu L, Villalta C, Booker M, Perkins L, Perrimon N
Nature Methods. 2008 Jan;5(1):49-51. doi: 10.1038/nmeth1146

The conditional expression of hairpin constructs in Drosophila melanogaster has emerged in recent years as a method of choice in functional genomic studies. To date, upstream activating site-driven RNA interference constructs have been inserted into the genome randomly using P-element-mediated transformation, which can result in false negatives due to variable expression. To avoid this problem, we have developed a transgenic RNA interference vector based on the phiC31 site-specific integration method.

View Publication Page
08/19/21 | Ventral stress fibers induce plasma membrane deformation in human fibroblasts.
Ghilardi SJ, Aronson MS, Sgro AE
Mol Biol Cell. 08/2021;32(18):1707-1723. doi: 10.1091/mbc.E21-03-0096

Interactions between the actin cytoskeleton and the plasma membrane are important in many eukaryotic cellular processes. During these processes, actin structures deform the cell membrane outward by applying forces parallel to the fiber's major axis (as in migration) or they deform the membrane inward by applying forces perpendicular to the fiber's major axis (as in the contractile ring during cytokinesis). Here we describe a novel actin-membrane interaction in human dermal myofibroblasts. When labeled with a cytosolic fluorophore, the myofibroblasts displayed prominent fluorescent structures on the ventral side of the cell. These structures are present in the cell membrane and colocalize with ventral actin stress fibers, suggesting that the stress fibers bend the membrane to form a "cytosolic pocket" that the fluorophores diffuse into, creating the observed structures. The existence of this pocket was confirmed by transmission electron microscopy. While dissolving the stress fibers, inhibiting fiber protein binding, or inhibiting myosin II binding of actin removed the observed pockets, modulating cellular contractility did not remove them. Taken together, our results illustrate a novel actin-membrane bending topology where the membrane is deformed outward rather than being pinched inward, resembling the topological inverse of the contractile ring found in cytokinesis.

View Publication Page
10/31/21 | Versatile On-Demand Fluorescent Labeling of Fusion Proteins Using Fluorescence-Activating and Absorption-Shifting Tag (FAST).
Gautier A, Jullien L, Li C, Plamont M, Tebo AG, Thauvin M, Volovitch M, Vriz S
Methods Mol Biol. 2021;2350:253-265. doi: 10.1007/978-1-0716-1593-5_16

Observing the localization, the concentration, and the distribution of proteins in cells or organisms is essential to understand theirs functions. General and versatile methods allowing multiplexed imaging of proteins under a large variety of experimental conditions are thus essential for deciphering the inner workings of cells and organisms. Here, we present a general method based on the non-covalent labeling of a small protein tag, named FAST (fluorescence-activating and absorption-shifting tag), with various fluorogenic ligands that light up upon labeling, which makes the simple, robust, and versatile on-demand labeling of fusion proteins in a wide range of experimental systems possible.

View Publication Page
06/17/13 | Vertebrate versus invertebrate neural circuits.
Katz P, Grillner S, Wilson R, Borst A, Greenspan R, Buzsáki G, Martin K, Marder E, Kristan W, Friedrich R, Chklovskii DM
Current Biology. 2013 Jun 17;23(12):R504-6
Svoboda Lab
02/03/10 | Vibrissa-based object localization in head-fixed mice.
O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K
The Journal of Neuroscience. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010

Linking activity in specific cell types with perception, cognition, and action, requires quantitative behavioral experiments in genetic model systems such as the mouse. In head-fixed primates, the combination of precise stimulus control, monitoring of motor output, and physiological recordings over large numbers of trials are the foundation on which many conceptually rich and quantitative studies have been built. Choice-based, quantitative behavioral paradigms for head-fixed mice have not been described previously. Here, we report a somatosensory absolute object localization task for head-fixed mice. Mice actively used their mystacial vibrissae (whiskers) to sense the location of a vertical pole presented to one side of the head and reported with licking whether the pole was in a target (go) or a distracter (no-go) location. Mice performed hundreds of trials with high performance (>90% correct) and localized to <0.95 mm (<6 degrees of azimuthal angle). Learning occurred over 1-2 weeks and was observed both within and across sessions. Mice could perform object localization with single whiskers. Silencing barrel cortex abolished performance to chance levels. We measured whisker movement and shape for thousands of trials. Mice moved their whiskers in a highly directed, asymmetric manner, focusing on the target location. Translation of the base of the whiskers along the face contributed substantially to whisker movements. Mice tended to maximize contact with the go (rewarded) stimulus while minimizing contact with the no-go stimulus. We conjecture that this may amplify differences in evoked neural activity between trial types.

View Publication Page
Ji LabJayaraman LabSvoboda Lab
02/27/17 | Video-rate volumetric functional imaging of the brain at synaptic resolution.
Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig JD, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N
Nature Neuroscience. 2017 Feb 27;20(4):620-8. doi: 10.1038/nn.4516

Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.

View Publication Page