Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    05/05/16 | Real-time quantification of single RNA translation dynamics in living cells.
    Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP, Zhang Z, Lavis LD, Grimm JB, Viswanathan S, Looger LL
    Science. 2016 May 05;352(6292):1425-9. doi: 10.1126/science.aaf0899

    Although mRNA translation is a fundamental biological process, it has never been imaged in real-time with single molecule precision in vivo. To achieve this, we developed Nascent Chain Tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify single mRNA protein synthesis dynamics. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 s. Polysomes contain ~1 ribosome every 200-900 nucleotides and are globular rather than elongated in shape. By developing multi-color probes, we show most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.

    View Publication Page
    Singer Lab
    05/05/16 | Translation dynamics of single mRNAs in live cells and neurons.
    Wu B, Eliscovich C, Yoon YJ, Singer RH
    Science (New York, N.Y.). 2016 May 05;352(6292):1430-5. doi: 10.1126/science.aaf1084

    Translation is the fundamental biological process converting mRNA information into proteins. Single molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here we report Single molecule Imaging of NAscent PeptideS (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 AA/s). In primary neurons mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool to address the spatiotemporal translation mechanism of single mRNAs in living cells.

    View Publication Page