Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

161 Publications

Showing 51-60 of 161 results
Your Criteria:
    03/31/20 | ER membranes exhibit phase behavior at sites of organelle contact.
    King C, Sengupta P, Seo AY, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2020 March 31;117(13):7225-7235. doi: 10.1073/pnas.1910854117

    The endoplasmic reticulum (ER) is the site of synthesis of secretory and membrane proteins and contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner. How the ER spatially segregates its numerous and diverse functions, including positioning nanoscopic contact sites with other organelles, is unclear. We demonstrate that hypotonic swelling of cells converts the ER and other membrane-bound organelles into micrometer-scale large intracellular vesicles (LICVs) that retain luminal protein content and maintain contact sites with each other through localized organelle tethers. Upon cooling, ER-derived LICVs phase-partition into microscopic domains having different lipid-ordering characteristics, which is reversible upon warming. Ordered ER lipid domains mark contact sites with ER and mitochondria, lipid droplets, endosomes, or plasma membrane, whereas disordered ER lipid domains mark contact sites with lysosomes or peroxisomes. Tethering proteins concentrate at ER–organelle contact sites, allowing time-dependent behavior of lipids and proteins to be studied at these sites. These findings demonstrate that LICVs provide a useful model system for studying the phase behavior and interactive properties of organelles in intact cells.

    View Publication Page
    01/01/22 | ER proteins decipher the tubulin code to regulate organelle distribution.
    Zheng P, Obara CJ, Szczesna E, Nixon-Abell J, Mahalingan KK, Roll-Mecak A, Lippincott-Schwartz J, Blackstone C
    Nature. 2022 Jan 01;601(7891):132-138. doi: 10.1038/s41586-021-04204-9

    Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm, forming abundant contacts with other organelles. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.

    View Publication Page
    07/31/14 | ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway.
    Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, Lippincott-Schwartz J
    Cell. 2014 Jul 31;158(3):522-33. doi: 10.1016/j.cell.2014.06.026

    Proteins destined for the cell surface are first assessed in the endoplasmic reticulum (ER) for proper folding before release into the secretory pathway. This ensures that defective proteins are normally prevented from entering the extracellular environment, where they could be disruptive. Here, we report that, when ER folding capacity is saturated during stress, misfolded glycosylphosphatidylinositol-anchored proteins dissociate from resident ER chaperones, engage export receptors, and quantitatively leave the ER via vesicular transport to the Golgi. Clearance from the ER commences within minutes of acute ER stress, before the transcriptional component of the unfolded protein response is activated. These aberrant proteins then access the cell surface transiently before destruction in lysosomes. Inhibiting this stress-induced pathway by depleting the ER-export receptors leads to aggregation of the ER-retained misfolded protein. Thus, this rapid response alleviates the elevated burden of misfolded proteins in the ER at the onset of ER stress, promoting protein homeostasis in the ER.

    View Publication Page
    04/29/21 | ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER.
    Weigel AV, Chang C, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J
    Cell. 2021 Apr 29;184(9):2412. doi: 10.1016/j.cell.2021.03.035

    Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.

    View Publication Page
    10/29/13 | Fast structural responses of gap junction membrane domains to AB5 toxins.
    Majoul IV, Gao L, Betzig E, Onichtchouk D, Butkevich E, Kozlov Y, Bukauskas F, Bennett MV, Lippincott-Schwartz J, Duden R
    Proceedings of the National Academy of Sciences of the United States of America. 2013 Oct 29;110(44):E4125-33. doi: 10.1073/pnas.1315850110

    Gap junctions (GJs) represent connexin-rich membrane domains that connect interiors of adjoining cells in mammalian tissues. How fast GJs can respond to bacterial pathogens has not been known previously. Using Bessel beam plane illumination and confocal spinning disk microscopy, we found fast (~500 ms) formation of connexin-depleted regions (CDRs) inside GJ plaques between cells exposed to AB5 toxins. CDR formation appears as a fast redistribution of connexin channels within GJ plaques with minor changes in outline or geometry. CDR formation does not depend on membrane trafficking or submembrane cytoskeleton and has no effect on GJ conductance. However, CDR responses depend on membrane lipids, can be modified by cholesterol-clustering agents and extracellular K(+) ion concentration, and influence cAMP signaling. The CDR response of GJ plaques to bacterial toxins is a phenomenon observed for all tested connexin isoforms. Through signaling, the CDR response may enable cells to sense exposure to AB5 toxins. CDR formation may reflect lipid-phase separation events in the biological membrane of the GJ plaque, leading to increased connexin packing and lipid reorganization. Our data demonstrate very fast dynamics (in the millisecond-to-second range) within GJ plaques, which previously were considered to be relatively stable, long-lived structures.

    View Publication Page
    06/11/19 | Fate plasticity and reprogramming in genetically distinct populations of leucophores.
    Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL, Gur D, Chowdhury S, Flynn JD, Allen MC, Deheyn DD, Lee JC, Simon JA, Lippincott-Schwartz J, Raible DW, Parichy DM
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Jun 11;116(24):11806-11. doi: 10.1073/pnas.1901021116

    Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of fishes, including the zebrafish , we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.

    View Publication Page
    11/05/14 | Flat clathrin lattices: stable features of the plasma membrane.
    Grove J, Metcalf DJ, Knight AE, Wavre-Shapton ST, Sun T, Protonotarios ED, Griffin LD, Lippincott-Schwartz J, Marsh M
    Molecular biology of the cell. 2014 Nov 5;25(22):3581-94. doi: 10.1091/mbc.E14-06-1154

    Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo.

    View Publication Page
    02/21/24 | Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics.
    Dou Z, Liu R, Gui P, Fu C, Lippincott-Schwartz J, Yao X, Liu X
    Molecular Biology of the Cell. 2024 Feb 21:mbcE23090379. doi: 10.1091/mbc.E23-09-0379

    Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC- FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.

    View Publication Page
    11/04/11 | Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor.
    Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE
    Immunity. 2011 Nov 23;35(5):705-20. doi: 10.1016/j.immuni.2011.10.004

    Receptor-regulated cellular signaling often is mediated by formation of transient, heterogeneous protein complexes of undefined structure. We used single and two-color photoactivated localization microscopy to study complexes downstream of the T cell antigen receptor (TCR) in single-molecule detail at the plasma membrane of intact T cells. The kinase ZAP-70 distributed completely with the TCRζ chain and both partially mixed with the adaptor LAT in activated cells, thus showing localized activation of LAT by TCR-coupled ZAP-70. In resting and activated cells, LAT primarily resided in nanoscale clusters as small as dimers whose formation depended on protein-protein and protein-lipid interactions. Surprisingly, the adaptor SLP-76 localized to the periphery of LAT clusters. This nanoscale structure depended on polymerized actin and its disruption affected TCR-dependent cell function. These results extend our understanding of the mechanism of T cell activation and the formation and organization of TCR-mediated signaling complexes, findings also relevant to other receptor systems.

    View Publication Page
    11/01/11 | Fuse or die: Shaping mitochondrial fate during starvation.
    Rambold AS, Kostelecky B, Lippincott-Schwartz J
    Communicative & integrative biology. 2011 Nov 1;4(6):752-4

    Mitochondria continuously change their shape and thereby influence different cellular processes like cell death or development. Recently, we showed that during starvation mitochondria fuse into a highly connected network. The change in mitochondrial shape was dependent on inactivation of the fission protein Drp1, through targeting of two different phosphorylation sites. This rapid inhibition of mitochondrial fission led to unopposed fusion, protecting mitochondria from starvation-induced degradation and enabling the cell to survive nutrient scarce conditions.

    View Publication Page