Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

7 Publications

Showing 1-7 of 7 results
Your Criteria:
    01/01/10 | Analysis of mitochondrial dynamics and functions using imaging approaches.
    Mitra K, Lippincott-Schwartz J
    Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2010 Mar;Chapter 4:Unit 4.25.1-21. doi: 10.1002/0471143030.cb0425s46

    Mitochondria are organelles that have been primarily known as the powerhouse of the cell. However, recent advances in the field have revealed that mitochondria are also involved in many other cellular activities like lipid modifications, redox balance, calcium balance, and even controlled cell death. These multifunctional organelles are motile and highly dynamic in shapes and forms; the dynamism is brought about by the mitochondria's ability to undergo fission and fusion with each other. Therefore, it is very important to be able to image mitochondrial shape changes to relate to the variety of cellular functions these organelles have to accomplish. The protocols described here will enable researchers to perform steady-state and time-lapse imaging of mitochondria in live cells by using confocal microscopy. High-resolution three-dimensional imaging of mitochondria will not only be helpful in understanding mitochondrial structure in detail but it also could be used to analyze their structural relationships with other organelles in the cell. FRAP (fluorescence recovery after photobleaching) studies can be performed to understand mitochondrial dynamics or dynamics of any mitochondrial molecule within the organelle. The microirradiation assay can be performed to study functional continuity between mitochondria. A protocol for measuring mitochondrial potential has also been included in this unit. In conclusion, the protocols described here will aid the understanding of mitochondrial structure-function relationship.

    View Publication Page
    01/01/10 | Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.
    Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV
    Journal of the American Chemical Society. 2010 May 12;132(18):6481-91. doi: 10.1021/ja100906g

    Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.

    View Publication Page
    01/01/10 | Lipids and cholesterol as regulators of traffic in the endomembrane system.
    Lippincott-Schwartz J, Phair RD
    Annual review of biophysics. 2010;39:559-78. doi: 10.1146/annurev.biophys.093008.131357

    The endomembrane system of eukaryotic cells uses membrane-enclosed carriers to move diverse macromolecules among different membrane-bound compartments, a requirement for cells to secrete and take up molecules from their environment. Two recycling pathways-biosynthetic and endocytic, each with specific lipid components-make up this system, with the Golgi apparatus mediating transport between the two. Here, we integrate lipid-based mechanisms into the description of this system. A partitioning model of the Golgi apparatus is discussed as a working hypothesis to explain how membrane lipids and proteins that are segregated based on lateral lipid partitioning support the unique composition of the biosynthetic and endocytic recycling pathways in the face of constant trafficking of molecular constituents. We further discuss how computational modeling can allow for interpretation of experimental findings and provide mechanistic insight into these important cellular pathways.

    View Publication Page
    01/01/10 | Mitochondria supply membranes for autophagosome biogenesis during starvation.
    Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J
    Cell. 2010 May 14;141(4):656-67. doi: 10.1016/j.cell.2010.04.009

    Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes.

    View Publication Page
    01/01/10 | Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.
    Manley S, Gillette JM, Lippincott-Schwartz J
    Methods in enzymology. 2010;475:109-20. doi: 10.1016/S0076-6879(10)75005-9

    Recent developments in single-molecule localization techniques using photoactivatable fluorescent proteins have allowed the probing of single-molecule motion in a living cell with high specificity, millisecond time resolution, and nanometer spatial resolution. Analyzing the dynamics of individual molecules at high densities in this manner promises to provide new insights into the mechanisms of many biological processes, including protein heterogeneity in the plasma membrane, the dynamics of cytoskeletal flow, and clustering of receptor complexes in response to signaling cues. Here we describe the method of single-molecule tracking photoactivated localization microscopy (sptPALM) and discuss how its use can contribute to a quantitative understanding of fundamental cellular processes.

    View Publication Page
    01/01/10 | Superresolution imaging using single-molecule localization.
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J
    Annual review of physical chemistry. 2010;61:345-67. doi: 10.1146/annurev.physchem.012809.103444

    Superresolution imaging is a rapidly emerging new field of microscopy that dramatically improves the spatial resolution of light microscopy by over an order of magnitude (approximately 10-20-nm resolution), allowing biological processes to be described at the molecular scale. Here, we discuss a form of superresolution microscopy based on the controlled activation and sampling of sparse subsets of photoconvertible fluorescent molecules. In this single-molecule-based imaging approach, a wide variety of probes have proved valuable, ranging from genetically encodable photoactivatable fluorescent proteins to photoswitchable cyanine dyes. These have been used in diverse applications of superresolution imaging: from three-dimensional, multicolor molecule localization to tracking of nanometric structures and molecules in living cells. Single-molecule-based superresolution imaging thus offers exciting possibilities for obtaining molecular-scale information on biological events occurring at variable timescales.

    View Publication Page
    01/01/10 | The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death.
    Freundt EC, Yu L, Goldsmith CS, Welsh S, Cheng A, Yount B, Liu W, Frieman MB, Buchholz UJ, Screaton GR, Lippincott-Schwartz J, Zaki SR, Xu X, Baric RS, Subbarao K, Lenardo MJ
    Journal of virology. 2010 Jan;84(2):1097-109. doi: 10.1128/JVI.01662-09

    The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains eight open reading frames (ORFs) that encode novel proteins. These accessory proteins are dispensable for in vitro and in vivo replication and thus may be important for other aspects of virus-host interactions. We investigated the functions of the largest of the accessory proteins, the ORF 3a protein, using a 3a-deficient strain of SARS-CoV. Cell death of Vero cells after infection with SARS-CoV was reduced upon deletion of ORF 3a. Electron microscopy of infected cells revealed a role for ORF 3a in SARS-CoV induced vesicle formation, a prominent feature of cells from SARS patients. In addition, we report that ORF 3a is both necessary and sufficient for SARS-CoV-induced Golgi fragmentation and that the 3a protein accumulates and localizes to vesicles containing markers for late endosomes. Finally, overexpression of ADP-ribosylation factor 1 (Arf1), a small GTPase essential for the maintenance of the Golgi apparatus, restored Golgi morphology during infection. These results establish an important role for ORF 3a in SARS-CoV-induced cell death, Golgi fragmentation, and the accumulation of intracellular vesicles.

    View Publication Page