Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

94 Publications

Showing 31-40 of 94 results
Your Criteria:
    01/31/14 | EGFR and FGFR pathways have distinct roles in Drosophila mushroom body development and ethanol-induced behavior.
    King IF, Eddison M, Kaun KR, Heberlein U
    PLoS One. 2014 Jan 31;9(1):e87714. doi: 10.1371/journal.pone.0087714

    Epidermal Growth Factor Receptor (EGFR) signaling has a conserved role in ethanol-induced behavior in flies and mice, affecting ethanol-induced sedation in both species. However it is not known what other effects EGFR signaling may have on ethanol-induced behavior, or what roles other Receptor Tyrosine Kinase (RTK) pathways may play in ethanol induced behaviors. We examined the effects of both the EGFR and Fibroblast Growth Factor Receptor (FGFR) RTK signaling pathways on ethanol-induced enhancement of locomotion, a behavior distinct from sedation that may be associated with the rewarding effects of ethanol. We find that both EGFR and FGFR genes influence ethanol-induced locomotion, though their effects are opposite - EGFR signaling suppresses this behavior, while FGFR signaling promotes it. EGFR signaling affects development of the Drosophila mushroom bodies in conjunction with the JNK MAP kinase basket (bsk), and with the Ste20 kinase tao, and we hypothesize that the EGFR pathway affects ethanol-induced locomotion through its effects on neuronal development. We find, however, that FGFR signaling most likely affects ethanol-induced behavior through a different mechanism, possibly through acute action in adult neurons.

    View Publication Page
    05/07/18 | Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila males.
    Zer-Krispil S, Zak H, Shao L, Ben-Shaanan S, Tordjman L, Bentzur A, Shmueli A, Shohat-Ophir G
    Current Biology : CB. 2018 May 07;28(9):1445-1452.e3. doi: 10.1016/j.cub.2018.03.039

    The reward system is a collection of circuits that reinforce behaviors necessary for survival [1, 2]. Given the importance of reproduction for survival, actions that promote successful mating induce pleasurable feeling and are positively reinforced [3, 4]. This principle is conserved in Drosophila, where successful copulation is naturally rewarding to male flies, induces long-term appetitive memories [5], increases brain levels of neuropeptide F (NPF, the fly homolog of neuropeptide Y), and prevents ethanol, known otherwise as rewarding to flies [6, 7], from being rewarding [5]. It is not clear which of the multiple sensory and motor responses performed during mating induces perception of reward. Sexual interactions with female flies that do not reach copulation are not sufficient to reduce ethanol consumption [5], suggesting that only successful mating encounters are rewarding. Here, we uncoupled the initial steps of mating from its final steps and tested the ability of ejaculation to mimic the rewarding value of full copulation. We induced ejaculation by activating neurons that express the neuropeptide corazonin (CRZ) [8] and subsequently measured different aspects of reward. We show that activating Crz-expressing neurons is rewarding to male flies, as they choose to reside in a zone that triggers optogenetic stimulation of Crz neurons and display conditioned preference for an odor paired with the activation. Reminiscent of successful mating, repeated activation of Crz neurons increases npf levels and reduces ethanol consumption. Our results demonstrate that ejaculation stimulated by Crz/Crz-receptor signaling serves as an essential part of the mating reward mechanism in Drosophila. VIDEO ABSTRACT.

    View Publication Page

    BACKGROUND: Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT.

    RESULTS: Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep.

    CONCLUSIONS: Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.

    View Publication Page
    06/12/98 | Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway.
    Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U
    Cell. 1998 Jun 12;93(6):997-1007

    Upon exposure to ethanol, Drosophila display behaviors that are similar to ethanol intoxication in rodents and humans. Using an inebriometer to measure ethanol-induced loss of postural control, we identified cheapdate, a mutant with enhanced sensitivity to ethanol. Genetic and molecular analyses revealed that cheapdate is an allele of the memory mutant amnesiac. amnesiac has been postulated to encode a neuropeptide that activates the cAMP pathway. Consistent with this, we find that enhanced ethanol sensitivity of cheapdate can be reversed by treatment with agents that increase cAMP levels or PKA activity. Conversely, genetic or pharmacological reduction in PKA activity results in increased sensitivity to ethanol. Taken together, our results provide functional evidence for the involvement of the cAMP signal transduction pathway in the behavioral response to intoxicating levels of ethanol.

    View Publication Page
    05/01/08 | Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster.
    Berger KH, Kong EC, Dubnau J, Tully T, Moore MS, Heberlein U
    Alcoholism, Clinical and Experimental Research. 2008 May;32(5):895-908. doi: 10.1111/j.1530-0277.2008.00659.x

    BACKGROUND: It has become increasingly clear that molecular and neural mechanisms underlying learning and memory and drug addiction are largely shared. To confirm and extend these findings, we analyzed ethanol-responsive behaviors of a collection of Drosophila long-term memory mutants.

    METHODS: For each mutant, sensitivity to the acute uncoordinating effects of ethanol was quantified using the inebriometer. Additionally, 2 distinct forms of ethanol tolerance were measured: rapid tolerance, which develops in response to a single brief exposure to a high concentration of ethanol vapor; and chronic tolerance, which develops following a sustained low-level exposure.

    RESULTS: Several mutants were identified with altered sensitivity, rapid or chronic tolerance, while a number of mutants exhibited multiple defects.

    CONCLUSIONS: The corresponding genes in these mutants represent areas of potential overlap between learning and memory and behavioral responses to alcohol. These genes also define components shared between different ethanol behavioral responses.

    View Publication Page
    02/01/10 | Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila.
    Kong EC, Allouche L, Chapot PA, Vranizan K, Moore MS, Heberlein U, Wolf FW
    Alcoholism, Clinical and Experimental Research. 2010 Feb;34(2):302-16. doi: 10.1111/j.1530-0277.2009.01093.x

    BACKGROUND: Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood.

    METHODS: To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes.

    RESULTS: Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance.

    CONCLUSIONS: Our findings implicate novel roles for these genes in regulating ethanol behavioral responses.

    View Publication Page
    01/01/98 | Eye development in Drosophila: formation of the eye field and control of differentiation.
    Treisman JE, Heberlein U
    Current Topics in Developmental Biology. 1998;39:119-58
    08/01/97 | eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins.
    Treisman JE, Luk A, Rubin GM, Heberlein U
    Genes & Development. 1997 Aug 1;11(15):1949-62

    In Drosophila, pattern formation at multiple stages of embryonic and imaginal development depends on the same intercellular signaling pathways. We have identified a novel gene, eyelid (eld), which is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, eld mutations have effects opposite to those caused by wingless (wg) mutations. eld encodes a widely expressed nuclear protein with a region homologous to a novel family of DNA-binding domains. Based on this homology and on the phenotypic analysis, we suggest that Eld could act as a transcription factor antagonistic to the Wg pathway.

    View Publication Page
    11/01/02 | Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila.
    Rodan AR, Kiger JA, Heberlein U
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002 Nov 1;22(21):9490-501

    Ethanol has complex but similar effects on behavior in mammals and the fruit fly Drosophila melanogaster. In addition, genetic and pharmacological approaches have implicated the cAMP pathway in the regulation of ethanol-induced behaviors in both flies and rodents. Here we examine the neuroanatomical loci that modulate ethanol sensitivity in Drosophila by targeting the expression of an inhibitor of cAMP-dependent protein kinase (PKA) to specific regions in the fly’s brain. Expression of the inhibitor in most brain regions or in muscle has no effect on behavior. In contrast, inhibition of PKA in a relatively small number of cells, possibly neurosecretory cells, in the fly’s brain is sufficient to decrease sensitivity to the incoordinating effects of ethanol. Additional brain areas are, however, also involved. The mushroom bodies, brain structures where cAMP signaling is required for olfactory classical conditioning, are dispensable for the regulation of ethanol sensitivity. Finally, different behavioral effects of ethanol, motor incoordination and sedation, appear to be regulated by PKA function in distinct brain regions. We conclude that the regulation of ethanol-induced behaviors by PKA involves complex interactions among groups of cells that mediate either increased or reduced sensitivity to the acute intoxicating effects of ethanol.

    View Publication Page
    10/01/00 | Functional ethanol tolerance in Drosophila.
    Scholz H, Ramond J, Singh CM, Heberlein U
    Neuron. 2000 Oct;28:261-71

    In humans, repeated alcohol consumption leads to the development of tolerance, manifested as a reduced physiological and behavioral response to a particular dose of alcohol. Here we show that adult Drosophila develop tolerance to the sedating and motor-impairing effects of ethanol with kinetics of acquisition and dissipation that mimic those seen in mammals. Importantly, this tolerance is not caused by changes in ethanol absorption or metabolism. Rather, the development of tolerance requires the functional and structural integrity of specific central brain regions. Mutants unable to synthesize the catecholamine octopamine are also impaired in their ability to develop tolerance. Taken together, these data show that Drosophila is a suitable model system in which to study the molecular and neuroanatomical bases of ethanol tolerance.

    View Publication Page