Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    Looger LabGENIE
    04/10/23 | Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
    Vincent Magloire , Leonid P. Savtchenko , Sergyi Sylantyev , Thomas P. Jensen , Nicholas Cole , Jonathan S. Marvin , Loren L. Looger , Dimitri M. Kullmann , Matthew C. Walker , Ivan Pavlov , Dmitri A. Rusakov
    Current Biology. 2023 Apr 10;33(7):1249. doi: 10.1016/j.cub.2023.02.051

    Mechanisms that entrain and drive rhythmic epileptiform discharges remain debated. Traditionally, this quest has been focusing on interneuronal networks driven by GABAergic connections that activate synaptic or extrasynaptic receptors. However, synchronised interneuronal discharges could also trigger a transient elevation of extracellular GABA across the tissue volume, thus raising tonic GABAA receptor conductance (Gtonic) in multiple cells. Here, we use patch-clamp GABA ‘sniffer’ and optical GABA sensor to show that periodic epileptiform discharges are preceded by region-wide, rising waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to mechanistic principles underpinning this relationship. We validate this hypothesis using simultaneous patch-clamp recordings from multiple nerve cells, selective optogenetic stimulation of fast-spiking interneurons. Critically, we manipulate GABA uptake to suppress extracellular GABA waves but not synaptic GABAergic transmission, which shows a clear effect on rhythm generation. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA actions in pacing regenerative rhythmic activity in brain networks.

    View Publication Page