Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

190 Publications

Showing 31-40 of 190 results
Your Criteria:
    03/30/11 | Automated high speed stitching of large 3D microscopic images.
    Yu Y, Peng H
    2011 8TH IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2011 Mar 30:238-41. doi: 10.1109/isbi.2011.5872396

    High-resolution microscopic imaging of biological samples often produces multiple 3D image tiles to cover a large field of view of specimen. Usually each tile has a large size, in the range of hundreds of megabytes to several gigabytes. For many of our image data sets, existing software tools are often unable to stitch those 3D tiles into a panoramic view, thus impede further data analysis. We propose a simple, but accurate, robust, and automatic method to stitch a group of image tiles without a priori adjacency information of them. We first use a multiscale strategy to register a pair of 3D image tiles rapidly, achieving about 8~10 times faster speed and 10 times less memory requirement compared to previous methods. Then we design a minimum-spanning-tree based method to determine the optimal adjacency of tiles. We have successfully stitched large image stacks of model animals including C. elegans, fruit fly, dragonfly, and mouse, which could not be stitched by several existing methods.

    View Publication Page
    05/06/11 | Automated reconstruction of neuronal morphology based on local geometrical and global structural models.
    Zhao T, Xie J, Amat F, Clack N, Ahammad P, Peng H, Long F, Myers E
    Neuroinformatics. 2011 May 6;9(2-3):247-61. doi: 10.1007/s12021-011-9120-3

    Digital reconstruction of neurons from microscope images is an important and challenging problem in neuroscience. In this paper, we propose a model-based method to tackle this problem. We first formulate a model structure, then develop an algorithm for computing it by carefully taking into account morphological characteristics of neurons, as well as the image properties under typical imaging protocols. The method has been tested on the data sets used in the DIADEM competition and produced promising results for four out of the five data sets.

    View Publication Page
    01/01/11 | Automatic 3D neuron tracing using all-paths pruning.
    Long F, Peng H, Myers E
    Conference on Intelligent Systems for Molecular Biology. 2011:

    Motivation: Digital reconstruction, or tracing, of 3D neuron structures is critical toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low signal-to-noise ratio (SNR) and fragmented neuron segments. Published work can handle these hard situations only by introducing global prior information, such as where a neurite segment starts and terminates. However, manual incorporation of such global information can be very time consuming. Thus, a completely automatic approach for these hard situations is highly desirable.

    Results: We have developed an automatic graph algorithm, called the all-path pruning (APP), to trace the 3D structure of a neuron. To avoid potential mis-tracing of some parts of a neuron, an APP first produces an initial over-reconstruction, by tracing the optimal geodesic shortest path from the seed location to every possible destination voxel/pixel location in the image. Since the initial reconstruction contains all the possible paths and thus could contain redundant structural components (SC), we simplify the entire reconstruction without compromising its connectedness by pruning the redundant structural elements, using a new maximal-covering minimal-redundant (MCMR) subgraph algorithm. We show that MCMR has a linear computational complexity and will converge. We examined the performance of our method using challenging 3D neuronal image datasets of model organisms (e.g. fruit fly).

    View Publication Page
    Kainmueller Lab
    08/19/11 | Automatic extraction of mandibular nerve and bone from cone-beam CT data.
    Kainmueller D, Lamecker H, Seim H, Zinser M, Zachow S
    Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2009;12(Pt 2):76-83

    The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm.

    View Publication Page
    12/04/11 | Bayesian localization microscopy reveals nanoscale podosome dynamics.
    Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R
    Nature methods. 2012 Feb;9(2):195-200. doi: 10.1038/nmeth.1812

    We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.

    View Publication Page
    01/25/11 | Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
    Fu D, Wakabayashi Y, Lippincott-Schwartz J, Arias IM
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Jan 25;108(4):1403-8. doi: 10.1073/pnas.1018376108

    This study describes a unique function of taurocholate in bile canalicular formation involving signaling through a cAMP-Epac-MEK-Rap1-LKB1-AMPK pathway. In rat hepatocyte sandwich cultures, polarization was manifested by sequential progression of bile canaliculi from small structures to a fully branched network. Taurocholate accelerated canalicular network formation and concomitantly increased cAMP, which were prevented by adenyl cyclase inhibitor. The cAMP-dependent PKA inhibitor did not prevent the taurocholate effect. In contrast, activation of Epac, another cAMP downstream kinase, accelerated canalicular network formation similar to the effect of taurocholate. Inhibition of Epac downstream targets, Rap1 and MEK, blocked the taurocholate effect. Taurocholate rapidly activated MEK, LKB1, and AMPK, which were prevented by inhibition of adenyl cyclase or MEK. Our previous study showed that activated-LKB1 and AMPK participate in canalicular network formation. Linkage between bile acid synthesis, hepatocyte polarization, and regulation of energy metabolism is likely important in normal hepatocyte development and disease.

    View Publication Page
    12/27/11 | Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
    Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Dec 27;108(52):21081-6. doi: 10.1073/pnas.1117430109

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

    View Publication Page
    02/23/11 | Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain.
    Larochelle A, Gillette JM, Desmond R, Ichwan B, Cantilena A, Cerf A, Barrett AJ, Wayne AS, Lippincott-Schwartz J, Dunbar CE
    Blood. 2012 Feb 23;119(8):1848-55. doi: 10.1182/blood-2011-08-371583

    Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.

    View Publication Page
    Simpson LabRubin Lab
    06/01/11 | BrainAligner: 3D registration atlases of Drosophila brains.
    Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW, Simpson JH
    Nature Methods. 2011 Jun;8:493-500. doi: 10.1038/nmeth.1602

    Analyzing Drosophila melanogaster neural expression patterns in thousands of three-dimensional image stacks of individual brains requires registering them into a canonical framework based on a fiducial reference of neuropil morphology. Given a target brain labeled with predefined landmarks, the BrainAligner program automatically finds the corresponding landmarks in a subject brain and maps it to the coordinate system of the target brain via a deformable warp. Using a neuropil marker (the antibody nc82) as a reference of the brain morphology and a target brain that is itself a statistical average of data for 295 brains, we achieved a registration accuracy of 2 μm on average, permitting assessment of stereotypy, potential connectivity and functional mapping of the adult fruit fly brain. We used BrainAligner to generate an image pattern atlas of 2954 registered brains containing 470 different expression patterns that cover all the major compartments of the fly brain.

    View Publication Page
    07/19/11 | Bridging structure and process in developmental biology through new imaging technologies.
    Lippincott-Schwartz J
    Developmental cell. 2011 Jul 19;21(1):5-10. doi: 10.1016/j.devcel.2011.06.030

    Many unexpected discoveries in developmental biology have depended on advancement of imaging technologies to visualize developmental processes as they unfold across multiple spatial and temporal scales. This essay surveys the recent advances in imaging, highlighting emerging capabilities with an eye toward those poised to have the greatest impact on developmental biology.

    View Publication Page