Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

94 Publications

Showing 41-50 of 94 results
Your Criteria:
    09/01/09 | Genetic aspects of behavioral neurotoxicology.
    Levin ED, Aschner M, Heberlein U, Ruden D, Welsh-Bohmer KA, Bartlett S, Berger K, Chen L, Corl AB, Eddins D, French R, Hayden KM, Helmcke K, Hirsch HV, Linney E, Lnenicka G, Page GP, Possidente D, Possidente B, Kirshner A
    Neurotoxicology. 2009 Sep;30(5):741-53. doi: 10.1016/j.neuro.2009.07.014

    Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.

    View Publication Page
    08/01/00 | Genetic control of acute ethanol-induced behaviors in Drosophila.
    Singh CM, Heberlein U
    Alcoholism, Clinical and Experimental Research. 2000 Aug;24(8):1127-36

    BACKGROUND: In most organisms in which acute ethanol exposure has been studied, it leads to similar changes in behavior. Generally, low ethanol doses activate the central nervous system, whereas high doses are sedative. Sensitivity to the acute intoxicating effects of ethanol is in part under genetic control in rodents and humans, and reduced sensitivity in humans predicts the development of alcoholism (Crabbe et al., 1994; Schuckit, 1994). We have established Drosophila melanogaster as a model organism to study the mechanisms that regulate acute sensitivity to ethanol.

    METHODS: We measured the effects of ethanol vapor on Drosophila locomotor behaviors by using three different assays. Horizontal locomotion was quantified in a locomotor chamber, turning behavior was assayed in narrow tubes, and ethanol-induced loss of postural control was measured in an inebriometer. Mutants with altered sensitivity to the acute effects of ethanol were generated by treatment with ethyl methane sulfonate and isolated by selection in the inebriometer. We ascertained the effects of these mutations on ethanol pharmacokinetics by measuring ethanol levels in extracts of flies at various times during and after ethanol exposure.

    RESULTS: Among nearly 30,000 potentially mutant flies tested, we isolated 19 mutant strains with reduced and 4 strains with increased sensitivity to the acute effects of ethanol as measured in the inebriometer. Of these mutants, four showed changes in ethanol absorption. Two mutants, named barfly and tipsy to reflect their reduced and increased ethanol sensitivity in the inebriometer, respectively, were analyzed for locomotor behaviors. Both mutants exhibited ethanol-induced hyperactivity that was indistinguishable from wild type. However, barfly and tipsy displayed reduced and increased sensitivity to the sedative effects of ethanol, respectively. Finally, both mutants showed an increased rate of ethanol-induced turning behavior.

    CONCLUSIONS: The effects of acute ethanol exposure on Drosophila locomotor behaviors are remarkably similar to those described for mammals. The analysis of mutants with altered sensitivity to ethanol revealed that the genetic pathways which regulate these responses are complex and that single genes can affect hyperactivity, turning, and sedation independently.

    View Publication Page
    04/01/08 | Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster.
    LaFerriere H, Guarnieri DJ, Sitaraman D, Diegelmann S, Heberlein U, Zars T
    Genetics. 2008 Apr;178(4):1895-902. doi: 10.1534/genetics.107.084582

    The ad hoc genetic correlation between ethanol sensitivity and learning mechanisms in Drosophila could overemphasize a common process supporting both behaviors. To challenge directly the hypothesis that these mechanisms are singular, we examined the learning phenotypes of 10 new strains. Five of these have increased ethanol sensitivity, and the other 5 do not. We tested place and olfactory memory in each of these lines and found two new learning mutations. In one case, altering the tribbles gene, flies have a significantly reduced place memory, elevated olfactory memory, and normal ethanol response. In the second case, mutation of a gene we name ethanol sensitive with low memory (elm), place memory was not altered, olfactory memory was sharply reduced, and sensitivity to ethanol was increased. In sum, however, we found no overall correlation between ethanol sensitivity and place memory in the 10 lines tested. Furthermore, there was a weak but nonsignificant correlation between ethanol sensitivity and olfactory learning. Thus, mutations that alter learning and sensitivity to ethanol can occur independently of each other and this implies that the set of genes important for both ethanol sensitivity and learning is likely a subset of the genes important for either process.

    View Publication Page
    04/26/11 | Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption.
    Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, Desrivières S, Aliev FA, Khan AA, Amin N, Aulchenko YS, Bakalkin G, Bakker SJ, Balkau B, Beulens JW, Bilbao A, de Boer RA, Beury D, Bots ML, Breetvelt EJ, Cauchi S, Cavalcanti-Proença C, Chambers JC, Clarke T, Dahmen N, de Geus EJ, Dick D, Ducci F, Easton A, Edenberg HJ, Esko T, Esk T, Fernández-Medarde A, Foroud T, Freimer NB, Girault J, Grobbee DE, Guarrera S, Gudbjartsson DF, Hartikainen A, Heath AC, Hesselbrock V, Hofman A, Hottenga J, Isohanni MK, Kaprio J, Khaw K, Kuehnel B, Laitinen J, Lobbens S, Luan J, Mangino M, Maroteaux M, Matullo G, McCarthy MI, Mueller C, Navis G, Numans ME, Núñez A, Nyholt DR, Onland-Moret CN, Oostra BA, O'Reilly PF, Palkovits M, Penninx BW, Polidoro S, Pouta A, Prokopenko I, Ricceri F, Santos E, Smit JH, Soranzo N, Song K, Sovio U, Stumvoll M, Surakk I, Thorgeirsson TE, Thorsteinsdottir U, Troakes C, Tyrfingsson T, Tönjes A, Uiterwaal CS, Uitterlinden AG, van der Harst P, van der Schouw YT, Staehlin O, Vogelzangs N, Vollenweider P, Waeber G, Wareham NJ, Waterworth DM, Whitfield JB, Wichmann EH, Willemsen G, Witteman JC, Yuan X, Zhai G, Zhao JH, Zhang W, Martin NG, Metspalu A, Doering A, Scott J, Spector TD, Loos RJ, Boomsma DI, Mooser V, Peltonen L, Stefansson K, van Duijn CM, Vineis P, Sommer WH, Kooner JS, Spanagel R, Heberlein UA, Jarvelin M, Elliott P
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Apr 26;108(17):7119-24. doi: 10.1073/pnas.1017288108

    Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.

    View Publication Page
    05/14/15 | Genomic signatures of evolutionary transitions from solitary to group living.
    Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RF, Glastad KM, Hunt BG, Goodisman MA, Hauser F, Grimmelikhuijzen CJ, Pinheiro DG, Nunes FM, Soares MP, Tanaka ÉD, Simões ZL, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G
    Science. 2015 May 14:. doi: 10.1126/science.aaa4788

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of ten bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.

    View Publication Page
    12/08/09 | Glycogen synthase kinase-3/Shaggy mediates ethanol-induced excitotoxic cell death of Drosophila olfactory neurons.
    French RL, Heberlein U
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Dec 8;106(49):20924-9. doi: 10.1073/pnas.0910813106

    It has long been known that heavy alcohol consumption leads to neuropathology and neuronal death. While the response of neurons to an ethanol insult is strongly influenced by genetic background, the underlying mechanisms are poorly understood. Here, we show that even a single intoxicating exposure to ethanol causes non-cell-autonomous apoptotic death specifically of Drosophila olfactory neurons, which is accompanied by a loss of a behavioral response to the smell of ethanol and a blackening of the third antennal segment. The Drosophila homolog of glycogen synthase kinase-3 (GSK-3)beta, Shaggy, is required for ethanol-induced apoptosis. Consistent with this requirement, the GSK-3beta inhibitor lithium protects against the neurotoxic effects of ethanol, indicating the possibility for pharmacological intervention in cases of alcohol-induced neurodegeneration. Ethanol-induced death of olfactory neurons requires both their neural activity and functional NMDA receptors. This system will allow the investigation of the genetic and molecular basis of ethanol-induced apoptosis in general and provide an understanding of the molecular role of GSK-3beta in programmed cell death.

    View Publication Page
    10/07/05 | GPCR signaling is required for blood-brain barrier formation in drosophila.
    Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U
    Cell. 2005 Oct 7;123(1):133-44. doi: 10.1016/j.cell.2005.08.037

    The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein subunits G alpha i and G alpha o, and the regulator of G protein signaling Loco are required in the surface glia to achieve effective insulation. Our data suggest that the four proteins act in a complex common pathway. At the cellular level, the components function by regulating the cortical actin and thereby stabilizing the extended morphology of the surface glia, which in turn is necessary for the formation of septate junctions of sufficient length to achieve proper sealing of the nerve cord. Our study demonstrates the importance of morphogenetic regulation in blood-brain barrier development and places GPCR signaling at its core.

    View Publication Page
    02/23/95 | Growth and differentiation in the Drosophila eye coordinated by hedgehog.
    Heberlein U, Singh CM, Luk AY, Donohoe TJ
    Nature. 1995 Feb 23;373(6516):709-11. doi: 10.1038/373709a0

    Differentiation of the Drosophila retina is asynchronous: it starts at the posterior margin of the eye imaginal disc and progresses anteriorly over two days. During this time the disc continues to grow, increasing in size by approximately eightfold. An indentation in the epithelium, the morphogenetic furrow, marks the front edge of the differentiation wave. Anterior progression of the furrow is thought to be driven by signals emanating from differentiating photoreceptor cells in the posterior eye disc. A good candidate for such a signal is the product of the hedgehog (hh) gene; it is expressed, and presumably secreted, by differentiating photoreceptors and its function is required for continued furrow movement. Here we show that ectopic expression of hedgehog sets in motion ectopic furrows in the anterior eye disc. In addition to changes in cell shape, these ectopic furrows are associated with a tightly orchestrated series of events, including proliferation, cell cycle synchronization and pattern formation, that parallel normal furrow progression. We propose that the morphogenetic furrow coincides with a transient boundary that coordinates growth and differentiation of the eye disc, and that hedgehog is necessary and sufficient to propagate this boundary across the epithelium.

    View Publication Page
    03/13/07 | GSK-3/Shaggy regulates olfactory habituation in Drosophila.
    Wolf FW, Eddison M, Lee S, Cho W, Heberlein U
    Proceedings of the National Academy of Sciences of the United States of America. 2007 Mar 13;104(11):4653-7. doi: 10.1073/pnas.0700493104

    Habituation is a universal form of nonassociative learning that results in the devaluation of sensory inputs that have little information content. Although habituation is found throughout nature and has been studied in many organisms, the underlying molecular mechanisms remain poorly understood. We performed a forward genetic screen in Drosophila to search for mutations that modified habituation of an olfactory-mediated locomotor startle response, and we isolated a mutation in the glycogen synthase kinase-3 (GSK-3) homolog Shaggy. Decreases in Shaggy levels blunted habituation, whereas increases promoted habituation. Additionally, habituation acutely regulated Shaggy by an inhibitory phosphorylation mechanism, suggesting that a signal transduction pathway that regulates Shaggy is engaged during habituation. Although shaggy mutations also affected circadian rhythm period, this requirement was genetically separable from its role in habituation. Thus, shaggy functions in different neuronal circuits to regulate behavioral plasticity to an olfactory startle and circadian rhythmicity.

    View Publication Page
    02/01/07 | Guidelines on nicotine dose selection for in vivo research.
    Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM
    Psychopharmacology (Berl). 2007 Feb;190(3):269-319. doi: 10.1007/s00213-006-0441-0

    RATIONALE: This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure.

    OBJECTIVES: This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models.

    RESULTS: Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses.

    CONCLUSIONS: The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.

    View Publication Page