Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    08/01/08 | Optimizing one-shot learning with binary synapses.
    Romani S, Amit DJ, Amit Y
    Neural Computation. 2008 Aug;20(8):1928-50. doi: 10.1162/neco.2008.10-07-618

    A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of both familiarity recognition and memory retrieval, and estimate the network's capacity. In the case of binary neurons, we extend the analysis of Amit and Fusi (1994) to obtain capacity limits based on computations of signal-to-noise ratio of the field difference between selective and non-selective neurons of learned signals. We show that with fast learning (potentiation probability approximately 1), the most recently learned patterns can be retrieved in working memory (selective delay activity). A much higher number of once-seen learned patterns elicit a realistic familiarity signal in the presence of an external field. With potentiation probability much less than 1 (slow learning), memory retrieval disappears, whereas familiarity recognition capacity is maintained at a similarly high level. This analysis is corroborated in simulations. For analog neurons, where such analysis is more difficult, we simplify the capacity analysis by studying the excess number of potentiated synapses above the steady-state distribution. In this framework, we derive the optimal constraint between potentiation and depression probabilities that maximizes the capacity.

    View Publication Page
    01/02/08 | Universal memory mechanism for familiarity recognition and identification.
    Yakovlev V, Amit DJ, Romani S, Hochstein S
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 2008 Jan 2;28(1):239-48. doi: 10.1523/JNEUROSCI.4799-07.2008

    Macaque monkeys were tested on a delayed-match-to-multiple-sample task, with either a limited set of well trained images (in randomized sequence) or with never-before-seen images. They performed much better with novel images. False positives were mostly limited to catch-trial image repetitions from the preceding trial. This result implies extremely effective one-shot learning, resembling Standing's finding that people detect familiarity for 10,000 once-seen pictures (with 80% accuracy) (Standing, 1973). Familiarity memory may differ essentially from identification, which embeds and generates contextual information. When encountering another person, we can say immediately whether his or her face is familiar. However, it may be difficult for us to identify the same person. To accompany the psychophysical findings, we present a generic neural network model reproducing these behaviors, based on the same conservative Hebbian synaptic plasticity that generates delay activity identification memory. Familiarity becomes the first step toward establishing identification. Adding an inter-trial reset mechanism limits false positives for previous-trial images. The model, unlike previous proposals, relates repetition-recognition with enhanced neural activity, as recently observed experimentally in 92% of differential cells in prefrontal cortex, an area directly involved in familiarity recognition. There may be an essential functional difference between enhanced responses to novel versus to familiar images: The maximal signal from temporal cortex is for novel stimuli, facilitating additional sensory processing of newly acquired stimuli. The maximal signal for familiar stimuli arising in prefrontal cortex facilitates the formation of selective delay activity, as well as additional consolidation of the memory of the image in an upstream cortical module.

    View Publication Page