Filter
Associated Lab
- Aguilera Castrejon Lab (16) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (64) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (112) Apply Betzig Lab filter
- Beyene Lab (13) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (52) Apply Branson Lab filter
- Card Lab (41) Apply Card Lab filter
- Cardona Lab (63) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (14) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (12) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (46) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (50) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (19) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (29) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (60) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (26) Apply Hermundstad Lab filter
- Hess Lab (76) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (46) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (14) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (76) Apply Keller Lab filter
- Koay Lab (18) Apply Koay Lab filter
- Lavis Lab (148) Apply Lavis Lab filter
- Lee (Albert) Lab (34) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (28) Apply Li Lab filter
- Lippincott-Schwartz Lab (167) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (6) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (61) Apply Liu (Zhe) Lab filter
- Looger Lab (138) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (6) Apply O'Shea Lab filter
- Otopalik Lab (13) Apply Otopalik Lab filter
- Pachitariu Lab (47) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (15) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (51) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (43) Apply Romani Lab filter
- Rubin Lab (143) Apply Rubin Lab filter
- Saalfeld Lab (63) Apply Saalfeld Lab filter
- Satou Lab (16) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (67) Apply Schreiter Lab filter
- Sgro Lab (21) Apply Sgro Lab filter
- Shroff Lab (30) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (80) Apply Singer Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Stern Lab (156) Apply Stern Lab filter
- Sternson Lab (54) Apply Sternson Lab filter
- Stringer Lab (34) Apply Stringer Lab filter
- Svoboda Lab (135) Apply Svoboda Lab filter
- Tebo Lab (33) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (21) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (88) Apply Truman Lab filter
- Turaga Lab (50) Apply Turaga Lab filter
- Turner Lab (37) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (17) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (25) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (28) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (2) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (45) Apply GENIE filter
- Integrative Imaging (3) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2025 (81) Apply 2025 filter
- 2024 (223) Apply 2024 filter
- 2023 (162) Apply 2023 filter
- 2022 (193) Apply 2022 filter
- 2021 (194) Apply 2021 filter
- 2020 (196) Apply 2020 filter
- 2019 (202) Apply 2019 filter
- 2018 (232) Apply 2018 filter
- 2017 (217) Apply 2017 filter
- 2016 (209) Apply 2016 filter
- 2015 (252) Apply 2015 filter
- 2014 (236) Apply 2014 filter
- 2013 (194) Apply 2013 filter
- 2012 (190) Apply 2012 filter
- 2011 (190) Apply 2011 filter
- 2010 (161) Apply 2010 filter
- 2009 (158) Apply 2009 filter
- 2008 (140) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
4072 Publications
Showing 3761-3770 of 4072 resultsModern recording techniques now permit brain-wide sensorimotor circuits to be observed at single neuron resolution in small animals. Extracting theoretical understanding from these recordings requires principles that organize findings and guide future experiments. Here we review theoretical principles that shed light onto brain-wide sensorimotor processing. We begin with an analogy that conceptualizes principles as streetlamps that illuminate the empirical terrain, and we illustrate the analogy by showing how two familiar principles apply in new ways to brain-wide phenomena. We then focus the bulk of the review on describing three more principles that have wide utility for mapping brain-wide neural activity, making testable predictions from highly parameterized mechanistic models, and investigating the computational determinants of neuronal response patterns across the brain.
This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics.
The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations.
Theta oscillations are believed to play an important role in the coordination of neuronal firing in the entorhinal (EC)-hippocampal system but the underlying mechanisms are not known. We simultaneously recorded from neurons in multiple regions of the EC-hippocampal loop and examined their temporal relationships. Theta-coordinated synchronous spiking of EC neuronal populations predicted the timing of current sinks in target layers in the hippocampus. However, the temporal delays between population activities in successive anatomical stages were longer (typically by a half theta cycle) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We hypothesize that the temporal windows set by the theta cycles allow for local circuit interactions and thus a considerable degree of computational independence in subdivisions of the EC-hippocampal loop.
Sensory cue inputs and memory-related internal brain activities govern the firing of hippocampal neurons, but which specific firing patterns are induced by either of the two processes remains unclear. We found that sensory cues guided the firing of neurons in rats on a timescale of seconds and supported the formation of spatial firing fields. Independently of the sensory inputs, the memory-related network activity coordinated the firing of neurons not only on a second-long timescale, but also on a millisecond-long timescale, and was dependent on medial septum inputs. We propose a network mechanism that might coordinate this internally generated firing. Overall, we suggest that two independent mechanisms support the formation of spatial firing fields in hippocampus, but only the internally organized system supports short-timescale sequential firing and episodic memory.
In rodent hippocampus, neuronal activity is organized by a 6-10 Hz theta oscillation. The spike timing of hippocampal pyramidal cells with respect to the theta rhythm correlates with an animal’s position in space. This correlation has been suggested to indicate an explicit temporal code for position. Alternatively, it may be interpreted as a byproduct of theta-dependent dynamics of spatial information flow in hippocampus. Here we show that place cell activity on different phases of theta reflects positions shifted into the future or past along the animal’s trajectory in a two-dimensional environment. The phases encoding future and past positions are consistent across recorded CA1 place cells, indicating a coherent representation at the network level. Consistent theta-dependent time offsets are not simply a consequence of phase-position correlation (phase precession), because they are no longer seen after data randomization that preserves the phase-position relationship. The scale of these time offsets, 100-300 ms, is similar to the latencies of hippocampal activity after sensory input and before motor output, suggesting that offset activity may maintain coherent brain activity in the face of information processing delays.
Hippocampal place cells represent different environments with distinct neural activity patterns. Following an abrupt switch between two familiar configurations of visual cues defining two environments, the hippocampal neural activity pattern switches almost immediately to the corresponding representation. Surprisingly, during a transient period following the switch to the new environment, occasional fast transitions of activity patterns between the representations (flickering) were observed (Jezek et al. 2011). Here we show that an attractor neural network model of place cells with connections endowed with short-term synaptic plasticity can account for this phenomenon. A memory trace of the recent history of network activity is maintained in the state of the synapses, allowing the network to temporarily reactivate the representation of the previous environment in the absence of the corresponding sensory cues. The model predicts that the number of flickering events depends on the amplitude of the ongoing theta rhythm and the distance between the current position of the animal and its position at the time of cue switching. We test these predictions with new analysis of experimental data. These results suggest a potential role of short-term synaptic plasticity in recruiting the activity of different cell assemblies and in shaping hippocampal activity of behaving animals. This article is protected by copyright. All rights reserved.
Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the alpha-arrestin protein family; the alpha-arrestins are related to the classical beta-arrestins and visual arrestins. Txnip is the only alpha-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved alpha-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related alpha-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast alpha-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of alpha-arrestin proteins.
Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior, as mice consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. Focal optogenetic activation of hypothalamic thirst-sensing neurons, after satiation, returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions determining how a brainwide dynamical system transforms sensory input into behavioral output.
GABAergic terminals of chandelier cells exclusively innervate the axon initial segment (AIS) of excitatory neurons. Although the anatomy of these synapses has been well-studied in several brain areas, relatively little is known about their physiological properties. Using vesicular γ-aminobutyric acid transporter-channelrhodopsin 2-enhanced yellow fluorescence protein (VGAT-ChR2-YFP)-expressing mice and a novel fibreoptic 'laserspritzer' approach that we developed, we investigated the physiological properties of axo-axonic synapses (AASs) in brain slices from the piriform cortex (PC) of mice. AASs were in close proximity to voltage-gated Na(+) (NaV) channels located at the AIS. AASs were selectively activated by a 5 μm laserspritzer placed in close proximity to the AIS. Under a minimal laser stimulation condition and using whole-cell somatic voltage-clamp recordings, the amplitudes and kinetics of IPSCs mediated by AASs were similar to those mediated by perisomatic inhibitions. Results were further validated with channelrhodopsin 2-assisted circuit mapping (CRACM) of the entire inhibitory inputs map. For the first time, we revealed that the laserspritzer-induced AAS-IPSCs persisted in the presence of TTX and TEA but not 4-AP. Next, using gramicidin-based perforated patch recordings, we found that the GABA reversal potential (EGABA) was -73.6 ± 1.2 mV when induced at the AIS and -72.8 ± 1.1 mV when induced at the perisomatic site. Our anatomical and physiological results lead to the novel conclusions that: (1) AASs innervate the entire length of the AIS, as opposed to forming a highly concentrated cartridge, (2) AAS inhibition suppresses action potentials and epileptiform activity more robustly than perisomatic inhibitions, and (3) AAS activation alone can be sufficient to inhibit action potential generation and epileptiform activities in vitro.