Filter
Associated Lab
- Aguilera Castrejon Lab (16) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (64) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (113) Apply Betzig Lab filter
- Beyene Lab (13) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (53) Apply Branson Lab filter
- Card Lab (42) Apply Card Lab filter
- Cardona Lab (64) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (15) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (12) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (46) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (50) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (19) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (29) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (63) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (27) Apply Hermundstad Lab filter
- Hess Lab (77) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (46) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (14) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (76) Apply Keller Lab filter
- Koay Lab (18) Apply Koay Lab filter
- Lavis Lab (149) Apply Lavis Lab filter
- Lee (Albert) Lab (34) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (28) Apply Li Lab filter
- Lippincott-Schwartz Lab (169) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (6) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (63) Apply Liu (Zhe) Lab filter
- Looger Lab (138) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (7) Apply O'Shea Lab filter
- Otopalik Lab (13) Apply Otopalik Lab filter
- Pachitariu Lab (48) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (15) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (51) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (43) Apply Romani Lab filter
- Rubin Lab (143) Apply Rubin Lab filter
- Saalfeld Lab (63) Apply Saalfeld Lab filter
- Satou Lab (16) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (68) Apply Schreiter Lab filter
- Sgro Lab (21) Apply Sgro Lab filter
- Shroff Lab (31) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (80) Apply Singer Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Stern Lab (156) Apply Stern Lab filter
- Sternson Lab (54) Apply Sternson Lab filter
- Stringer Lab (36) Apply Stringer Lab filter
- Svoboda Lab (135) Apply Svoboda Lab filter
- Tebo Lab (33) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (21) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (88) Apply Truman Lab filter
- Turaga Lab (51) Apply Turaga Lab filter
- Turner Lab (38) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (21) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (25) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (28) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (3) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (11) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (46) Apply GENIE filter
- Integrative Imaging (4) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2025 (130) Apply 2025 filter
- 2024 (216) Apply 2024 filter
- 2023 (160) Apply 2023 filter
- 2022 (193) Apply 2022 filter
- 2021 (194) Apply 2021 filter
- 2020 (196) Apply 2020 filter
- 2019 (202) Apply 2019 filter
- 2018 (232) Apply 2018 filter
- 2017 (217) Apply 2017 filter
- 2016 (209) Apply 2016 filter
- 2015 (252) Apply 2015 filter
- 2014 (236) Apply 2014 filter
- 2013 (194) Apply 2013 filter
- 2012 (190) Apply 2012 filter
- 2011 (190) Apply 2011 filter
- 2010 (161) Apply 2010 filter
- 2009 (158) Apply 2009 filter
- 2008 (140) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
4112 Publications
Showing 1-10 of 4112 resultsSpatial multiomic profiling has been transforming the understanding of local tumor ecosystems. Yet, the spatial analyses of tumor-immune interactions at systemic levels, such as in liquid biopsies, are challenging. Within the last 10 years, we have longitudinally collected nearly 3,000 patient blood samples for multiplexing imaging of circulating tumor cells (CTCs) and their interactions with white blood cells (WBCs). Multicellular CTC clusters exhibit enhanced metastatic potential. The detection of CTCs and characterization of tumor immune ecosystems are constrained by (1) low frequency of CTCs in blood samples; (2) specific lineages of immune cells are not recognized by limited channels of current imaging methods, (3) reliance on labor-intensive manual analysis slows down the discovery of biomarkers for predicting therapy response and survival in cancer patients. We hypothesize that an AI-powered platform will accelerate the lineage and spatial characterization of tumor immune ecosystems for prognostic evaluations.
Understanding how neurons integrate into developing circuits and contribute to functional activity is essential for decoding brain development and plasticity. However, current methods to study neuronal integration often suffer from low throughput, limited spatiotemporal resolution, or invasive procedures that hinder in vivo functional analysis. To overcome these challenges, we present a birthdate-labeling strategy, named CHLOK, based on HaloTag technology and a broad palette of fluorescent synthetic dyes. This approach enables precise multicolor labeling of neurons according to their maturation stage and allows flexible integration into functional assays through compatibility with calcium imaging and optogenetics. We validated CHLOK by mapping birthdate-resolved neuronal activity in the developing visual and motor systems of zebrafish larvae. Our results reveal distinct functional contributions of early- versus late-born neurons, providing new insights into the temporal dynamics of circuit formation. Furthermore, we demonstrate the versatility of this approach, showcasing age-specific multicolor calcium and voltage imaging as well as optogenetic manipulation. By overcoming key limitations of existing techniques, CHLOK offers a powerful, versatile and non-invasive tool for studying neural integration, circuit development and function in vivo.
Liposomes are essential vehicles for membrane protein reconstitution and drug delivery, making them vital tools in both in vivo and in vitro studies. However, the lack of robust techniques for the precise arrangement of these synthetic vesicles limits their potential applications. Here, we present a modular polymerization platform based on square DNA origami to template the formation and organization of liposomes. By programming the sequence, number, position, chirality, and flexibility of sticky ends on each square, we assemble uniformly sized liposomes into diverse two-dimensional (2D) arrays, as well as finite lattices and rings. Additionally, we demonstrate stepwise assembly and targeted disassembly, enabling dynamic structural control. These complex liposome architectures represent a significant advancement in the fields of biotechnology, nanotechnology, and bottom-up biology.
Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (∼25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with contralateral ripple oscillations but were instead phase-locked to theta waves recorded in the contralateral CA1 region. Moreover, the subthreshold membrane potentials of neurons exhibited coherent intracellular theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.
During brain development, synapses are initially formed in excess and are later eliminated in an activity-dependent manner, with weak synapses being preferentially removed. Previous studies identified glia as mediators of synapse removal, but it is unclear how glia specifically target weak synapses. Here we show that, in the developing mouse visual pathway, inhibiting synaptic transmission induces postsynaptic activation of caspase-3. Caspase-3 is essential for synapse elimination driven by both spontaneous and experience-dependent neural activity. Synapse weakening-induced caspase-3 activation determines the specificity of synapse elimination mediated by microglia but not astrocytes. Furthermore, in a mouse model of Alzheimer’s disease, caspase-3 deficiency protects against synapse loss induced by amyloid-β deposition. Our results reveal caspase-3 activation as a key step in activity-dependent synapse elimination during development and synapse loss in neurodegeneration. bioRxiv preprint: https://doi.org/10.1101/2024.08.02.606316
Reducing fibrous aggregates of the protein tau is a possible strategy for halting the progression of Alzheimer's disease (AD). Previously, we found that in vitro, the D-enantiomeric peptide (D-peptide) D-TLKIVWC disassembles ultra-stable tau fibrils extracted from the autopsied brains of individuals with AD (hereafter, these tau fibrils are referred to as AD-tau) into benign segments, with no energy source other than ambient thermal agitation. To consider D-peptide-mediated disassembly as a potential route to therapeutics for AD, it is essential to understand the mechanism and energy source of the disassembly action. Here, we show that the assembly of D-peptides into amyloid-like ('mock-amyloid') fibrils is essential for AD-tau disassembly. These mock-amyloid fibrils have a right-handed twist but are constrained to adopt a left-handed twist when templated in complex with AD-tau. The release of strain that accompanies the conversion of left-twisted to right-twisted, relaxed mock-amyloid produces a torque that is sufficient to break the local hydrogen bonding between tau molecules, and leads to the fragmentation of AD-tau. This strain-relief mechanism seems to operate in other examples of amyloid fibril disassembly, and could inform the development of first-in-class therapeutics for amyloid diseases.
To successfully forage for food, animals must balance the energetic cost of searching for food sources with the energetic benefit of exploiting those sources. While the Marginal Value Theorem provides one normative account of this balance by specifying that a forager should leave a food patch when its energetic yield falls below the average yield of other patches in the environment, it assumes the presence of other readily reachable patches. In natural settings, however, a forager does not know whether it will encounter additional food patches, and it must balance potential energetic costs and benefits accordingly. Upon first encountering a patch of food, it faces a decision of whether and when to leave the patch in search of better options, and when to return if no better options are found. Here, we explore how a forager should structure its search for new food patches when the existence of those patches is unknown, and when searching for those patches requires energy that can only be harvested from a single known food patch. We identify conditions under which it is more favorable to explore the environment in several successive trips rather than in a single long exploration, and we show how the optimal sequence of trips depends on the forager’s beliefs about the distribution and nutritional content of food patches in the environment. This optimal strategy is well approximated by a local decision that can be implemented by a simple neural circuit architecture. Together, this work highlights how energetic constraints and prior beliefs shape optimal foraging strategies, and how such strategies can be approximated by simple neural networks that implement local decision rules.
Liposomes are essential vehicles for membrane protein reconstitution and drug delivery, making them vital tools in both in vivo and in vitro studies. However, the lack of robust techniques for the precise arrangement of these synthetic vesicles limits their potential applications. Here, we present a modular polymerization platform based on square DNA origami to template the formation and organization of liposomes. By programming the sequence, number, position, chirality, and flexibility of sticky ends on each square, we assemble uniformly sized liposomes into diverse two-dimensional (2D) arrays, as well as finite lattices and rings. Additionally, we demonstrate stepwise assembly and targeted disassembly, enabling dynamic structural control. These complex liposome architectures represent a significant advancement in the fields of biotechnology, nanotechnology, and bottom-up biology.
Artificial neural networks (ANNs) have been shown to predict neural responses in primary visual cortex (V1) better than classical models. However, this performance often comes at the expense of simplicity and interpretability. Here we introduce a new class of simplified ANN models that can predict over 70% of the response variance of V1 neurons. To achieve this high performance, we first recorded a new dataset of over 29,000 neurons responding to up to 65,000 natural image presentations in mouse V1. We found that ANN models required only two convolutional layers for good performance, with a relatively small first layer. We further found that we could make the second layer small without loss of performance, by fitting individual "minimodels" to each neuron. Similar simplifications applied for models of monkey V1 neurons. We show that the minimodels can be used to gain insight into how stimulus invariance arises in biological neurons. Preprint: https://www.biorxiv.org/content/early/2024/07/02/2024.06.30.601394
Often referred to as a 'fight,' survival involves intense competition over resources. Threat displays and high-intensity attacks are just a few of the aggressive actions exhibited during these contests. Certain motor programs are species-specific, like the vibration of a rattlesnake tail. However, conserved behavioral features are found across species, which appear to be mirrored within the brain. Further parallels have been found across sexes between aggression-promoting contexts and the underlying neuronal circuits. Unraveling the complex web of conserved and variable circuit mechanisms has been considerably advanced by the generation of brain-wiring diagrams in adult female and male Drosophila melanogaster. Here, I will summarize current research, primarily in Drosophila, on how contexts, sensory cues, and internal states regulate aggression across sexes.