Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

44 Publications

Showing 21-30 of 44 results
Your Criteria:
    Truman LabRiddiford Lab
    07/01/09 | The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
    Mirth CK, Truman JW, Riddiford LM
    Development. 2009 Jul;136:2345-53. doi: 10.1242/dev.032672

    In holometabolous insects, a species-specific size, known as critical weight, needs to be reached for metamorphosis to be initiated in the absence of further nutritional input. Previously, we found that reaching critical weight depends on the insulin-dependent growth of the prothoracic glands (PGs) in Drosophila larvae. Because the PGs produce the molting hormone ecdysone, we hypothesized that ecdysone signaling switches the larva to a nutrition-independent mode of development post-critical weight. Wing discs from pre-critical weight larvae [5 hours after third instar ecdysis (AL3E)] fed on sucrose alone showed suppressed Wingless (WG), Cut (CT) and Senseless (SENS) expression. Post-critical weight, a sucrose-only diet no longer suppressed the expression of these proteins. Feeding larvae that exhibit enhanced insulin signaling in their PGs at 5 hours AL3E on sucrose alone produced wing discs with precocious WG, CT and SENS expression. In addition, knocking down the Ecdysone receptor (EcR) selectively in the discs also promoted premature WG, CUT and SENS expression in the wing discs of sucrose-fed pre-critical weight larvae. EcR is involved in gene activation when ecdysone is present, and gene repression in its absence. Thus, knocking down EcR derepresses genes that are normally repressed by unliganded EcR, thereby allowing wing patterning to progress. In addition, knocking down EcR in the wing discs caused precocious expression of the ecdysone-responsive gene broad. These results suggest that post-critical weight, EcR signaling switches wing discs to a nutrition-independent mode of development via derepression.

    View Publication Page
    Riddiford Lab
    04/01/09 | The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta.
    Hiruma K, Riddiford LM
    Insect Biochemistry and Molecular Biology. 2009 Apr;39(4):245-53. doi: 10.1016/j.ibmb.2009.01.008

    Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.

    View Publication Page
    Riddiford Lab
    02/01/09 | Larval leg integrity is maintained by distal-less and is required for proper timing of metamorphosis in the flour beetle, tribolium castaneum.
    Suzuki Y, Squires DC, Riddiford LM
    Developmental Biology. 2009 Feb 1;326(1):60-7. doi: 10.1016/j.ydbio.2008.10.022

    The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.

    View Publication Page
    Riddiford Lab
    12/15/08 | Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone.
    Koyama T, Syropyatova MO, Riddiford LM
    Developmental Biology. 2008 Dec 15;324(2):258-65. doi: 10.1016/j.ydbio.2008.09.017

    At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.

    View Publication Page
    Truman LabRiddiford Lab
    08/22/08 | Developmental model of static allometry in holometabolous insects.
    Shingleton AW, Mirth CK, Bates PW
    Proceedings of the Royal Society B: Biological Sciences. 2008 Aug 22;275(1645):1875-85. doi: 10.1098/rspb.2008.0227

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the ’allometric coefficient’, is controlled by the relative sensitivity of an organ’s growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ’s final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

    View Publication Page
    Riddiford Lab
    06/01/08 | Juvenile hormone action: a 2007 perspective.
    Riddiford LM
    Journal of Insect Physiology. 2008 Jun;54(6):895-901. doi: 10.1016/j.jinsphys.2008.01.014

    Juvenile hormone (JH) is a key hormone in regulation of the insect’s life history, both in maintaining the larval state during molts and in directing reproductive maturation. This short review highlights the recent papers of the past year that lend new insight into the role of this hormone in the larva and the mechanisms whereby it achieves this role.

    View Publication Page
    Truman LabRiddiford Lab
    02/01/08 | The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa.
    Suzuki Y, Truman JW, Riddiford LM
    Development (Cambridge, England). 2008 Feb;135(3):569-77. doi: 10.1242/dev.015263

    The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.

    View Publication Page
    Riddiford Lab
    01/01/08 | Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster.
    Minakuchi C, Zhou X, Riddiford LM
    Mechanisms of Development. 2008 Jan-Feb;125:91-105. doi: 10.1016/j.mod.2007.10.002

    Juvenile hormone (JH) given at pupariation inhibits bristle formation and causes pupal cuticle formation in the abdomen of Drosophila melanogaster due to its prolongation of expression of the transcription factor Broad (BR). In a microarray analysis of JH-induced gene expression in abdominal integument, we found that Krüppel homolog 1 (Kr-h1) was up-regulated during most of adult development. Quantitative real-time PCR analyses showed that Kr-h1 up-regulation began at 10h after puparium formation (APF), and Kr-h1 up-regulation occurred in imaginal epidermal cells, persisting larval muscles, and larval oenocytes. Ectopic expression of Kr-h1 in abdominal epidermis using T155-Gal4 to drive UAS-Kr-h1 resulted in missing or short bristles in the dorsal midline. This phenotype was similar to that seen after a low dose of JH or after misexpression of br between 21 and 30 h APF. Ectopic expression of Kr-h1 prolonged the expression of BR protein in the pleura and the dorsal tergite. No Kr-h1 was seen after misexpression of br. Thus, Kr-h1 mediates some of the JH signaling in the adult abdominal epidermis and is upstream of br in this pathway. We also show for the first time that the JH-mediated maintenance of br expression in this epidermis is patterned and that JH delays the fusion of the imaginal cells and the disappearance of Dpp in the dorsal midline.

    View Publication Page
    Riddiford Lab
    09/30/07 | The coordination of the sequential appearance of MHR4 and dopa decarboxylase during the decline of the ecdysteroid titer at the end of the molt.
    Hiruma K, Riddiford LM
    Molecular and Cellular Endocrinology. 2007 Sep 30;276(1-2):71-9. doi: 10.1016/j.mce.2007.07.002

    During the last larval molt in Manduca sexta, in response to an increasing, then decreasing ecdysteroid titer, a number of transcription factors such as E75B, MHR3, MHR4, and betaFTZ-F1 appear and disappear in the abdominal epidermis leading to dopa decarboxylase (DDC) expression. Messenger RNAs for both the 20E-induced transcription factors, MHR3 and E75B, are maximal near the peak of the ecdysteroid titer with MHR4 mRNA appearing as the titer declines followed by betaFTZ-F1 and DDC mRNAs. E75B and MHR4 mRNA were not expressed in Manduca GV1 cells, either during exposure to 20E or after its removal. When either MHR3 dsRNA was transfected or E75B was constitutively expressed in these cells, MHR4 mRNA appeared in response to 20E by 6h. E75B was found to form a heterodimer with MHR3 using the BacterioMatch II two-hybrid assay. We conclude that MHR3 apparently suppresses MHR4 expression in the presence of 20E; the appearance of E75B then removes MHR3 by dimerization, allowing MHR4 to be expressed. Because of significant basal activity of the ddc promoter in the GV1 cells, we could perform rescue experiments by adding various factors. Constitutive expression of either E75B or MHR4 in the cells suppressed the significant basal activity of the 3.2kb ddc promoter in the GV1 cells, but 20E had no effect on this activity. Thus, E75B and MHR4 are 20E-induced inhibitory factors that suppress ddc expression and therefore act as ecdysteroid-regulated timers to coordinate the onset of ddc expression at the end of the molt.

    View Publication Page
    Riddiford Lab
    04/01/07 | Size assessment and growth control: how adult size is determined in insects.
    Mirth CK, Riddiford LM
    BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2007 Apr;29(4):344-55. doi: 10.1002/bies.20552

    Size control depends on both the regulation of growth rate and the control over when to stop growing. Studies of Drosophila melanogaster have shown that insulin and Target of Rapamycin (TOR) pathways play principal roles in controlling nutrition-dependent growth rates. A TOR-mediated nutrient sensor in the fat body detects nutrient availability, and regulates insulin signaling in peripheral tissues, which in turn controls larval growth rates. After larvae initiate metamorphosis, growth stops. For growth to stop at the correct time, larvae need to surpass a critical weight. Recently, it was found that the insulin-dependent growth of the prothoracic gland is involved in assessing when critical weight has been reached. Furthermore, mutations in DHR4, a repressor of ecdysone signaling, reduce critical weight and adult size. Thus, the mechanisms that control growth rates converge on those assessing size to ensure that the larvae attain the appropriate size at metamorphosis.

    View Publication Page