Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

12 Publications

Showing 11-12 of 12 results
Your Criteria:
    04/17/94 | Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.
    Spruston N, Jaffe DB, Johnston D
    Trends Neurosci. 1994 Apr;17(4):161-6

    The dendritic trees of neurons are structurally and functionally complex integrative units receiving thousands of synaptic inputs that have excitatory and inhibitory, fast and slow, and electrical and biochemical effects. The pattern of activation of these synaptic inputs determines if the neuron will fire an action potential at any given point in time and how it will respond to similar inputs in the future. Two critical factors affect the integrative function of dendrites: the distribution of voltage-gated ion channels in the dendritic tree and the passive electrical properties, or 'electrotonic structure', upon which these active channels are superimposed. The authors review recent data from patch-clamp recordings that provide new estimates of the passive membrane properties of hippocampal neurons, and show, with examples, how these properties affect the shaping and attenuation of synaptic potentials as they propagate in the dendrites, as well as how they affect the measurement of current from synapses located in the dendrites. Voltage-gated channels might influence the measurement of 'passive' membrane properties and, reciprocally, passive membrane properties might affect the activation of voltage-gated channels in dendrites.

    View Publication Page
    Baker Lab
    01/01/94 | Behavioral and neurobiological implications of sex-determining factors in Drosophila.
    Baker B, Taylor B, Villella. A. , Ryner L, Hall J
    Developmental. Genetics. 1994;15(3):275-96

    The function of the central nervous system as it controls sex-specific behaviors in Drosophila has been studied with renewed intensity, in the context of genetic factors that influence the development of sexually differentiated aspects of this insect. Three categories of genetic variations that cause anomalies in courtship and mating behaviors are discussed: (1) mutants isolated with regard to courtship defects, of which putatively courtship-specific variants such as the fruitless mutant are a subset; (2) general behavioral and neurological variants (including sensory and learning mutants), whose defects include subnormal reproductive performance; and (3) mutations of genes within the sex-determination regulatory hierarchy of Drosophila, the analysis of which has included studies of reproductive behavior. Recent studies of mutations in two of these categories have provided new insights into the control of neuronally based aspects of sex-specific behavior. The doublesex gene, the final factor acting in the sex-determination hierarchy, had been previously thought to regulate all aspects of sexual differentiation. Yet, it has been recently shown that doublesex does not control at least one neuronally-determined feature of sex-specific anatomy--a muscle in the male's abdomen, whose normal development is, however, dependent on the action of fruitless. These considerations prompted us to examine further (and in some cases re-examine) the influences exerted by sex-determination hierarchy genes on behavior. Our results--notably those obtained from assessments of doublesex mutations' effects on general reproductive actions and on a particular component of the courtship sequence (male "singing" behavior)--lead to the suggestion that there is a previously unrecognized branch within the sex-determination hierarchy, which controls the differentiation of the male- and female- specific phenotypes of Drosophila. This new branch separates from the doublesex-related one immediately before the action of that gene (just after transformer and transformer-2) and appears to control as least some aspects of neuronally determined sexual differentiation of males.

    View Publication Page