Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    06/15/01 | Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol.
    Cheng Y, Endo K, Wu K, Rodan AR, Heberlein U, Davis RL
    Cell. 2001 Jun 15;105(6):757-68

    Drosophila fasciclinII (fasII) mutants perform poorly after olfactory conditioning due to a defect in encoding, stabilizing, or retrieving short-term memories. Performance was rescued by inducing the expression of a normal transgene just before training and immediate testing. Induction after training but before testing failed to rescue performance, showing that Fas II does not have an exclusive role in memory retrieval processes. The stability of odor memories in fasII mutants are indistinguishable from control animals when initial performance is normalized. Like several other mutants deficient in odor learning, fasII mutants exhibit a heightened sensitivity to ethanol vapors. A combination of behavioral and genetic strategies have therefore revealed a role for Fas II in the molecular operations of encoding short-term odor memories and conferring alcohol sensitivity. The preferential expression of Fas II in the axons of mushroom body neurons furthermore suggests that short-term odor memories are formed in these neurites.

    View Publication Page
    06/01/01 | Rapid atomic density methods for molecular shape characterization.
    Mitchell JC, Kerr R, Ten Eyck LF
    Journal of Molecular Graphics & Modelling. 2001 Jun;19(3-4):325-30, 388-90

    Two methods for rapid characterization of molecular shape are presented. Both techniques are based on the density of atoms near the molecular surface. The Fast Atomic Density Evaluation (FADE) algorithm uses fast Fourier transforms to quickly estimate densities. The Pairwise Atomic Density Reverse Engineering (PADRE) method derives modified density measures from the relationship between atomic density and total potentials. While many shape-characterization techniques define shape relative to a surface, the descriptors returned by FADE and PADRE can measure local geometry from points within the three-dimensional space surrounding a molecule. The methods can be used to find crevices and protrusions near the surface of a molecule and to test shape complementarity at the interface between docking molecules.

    View Publication Page