Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

39 Publications

Showing 1-10 of 39 results
Your Criteria:
    12/19/02 | Memory of sequential experience in the hippocampus during slow wave sleep.
    Lee AK, Wilson MA
    Neuron. 2002 Dec 19;36(6):1183-94

    Rats repeatedly ran through a sequence of spatial receptive fields of hippocampal CA1 place cells in a fixed temporal order. A novel combinatorial decoding method reveals that these neurons repeatedly fired in precisely this order in long sequences involving four or more cells during slow wave sleep (SWS) immediately following, but not preceding, the experience. The SWS sequences occurred intermittently in brief ( approximately 100 ms) bursts, each compressing the behavioral sequence in time by approximately 20-fold. This rapid encoding of sequential experience is consistent with evidence that the hippocampus is crucial for spatial learning in rodents and the formation of long-term memories of events in time in humans.

    View Publication Page
    Cardona Lab
    12/15/02 | A novel invertebrate trophic factor related to invertebrate neurotrophins is involved in planarian body regional survival and asexual reproduction.
    Bueno D, Fernàndez-Rodríguez J, Cardona A, Hernàndez-Hernàndez V, Romero R
    Developmental biology. 2002 Dec 15;252:188-201

    Trophic factors are a heterogeneous group of molecules that promote cell growth and survival. In freshwater planarians, the small secreted protein TCEN49 is linked to the regional maintenance of the planarian central body region. To investigate its function in vivo, we performed loss-of-function and gain-of-function experiments by RNA interference and by the implantation of microbeads soaked in TCEN49, respectively. We show that TCEN49 behaves as a trophic factor involved in central body region neuron survival. In planarian tail regenerates, tcen49 expression inhibition by double-stranded RNA interference causes extensive apoptosis in various cell types, including nerve cells. This phenotype is rescued by the implantation of microbeads soaked in TCEN49 after RNA interference. On the other hand, in organisms committed to asexual reproduction, both tcen49 mRNA and its protein are detected not only in the central body region but also in the posterior region, expanding from cells close to the ventral nerve chords. In some cases, the implantation of microbeads soaked in TCEN49 in the posterior body region drives organisms to reproduce asexually, and the inhibition of tcen49 expression obstructs this process, suggesting a link between the central nervous system, TCEN49, regional induction, and asexual reproduction. Finally, the distribution of TCEN49 cysteine and tyrosine residues also points to a common evolutionary origin for TCEN49 and molluscan neurotrophins.

    View Publication Page
    12/15/02 | High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila.
    Wolf FW, Rodan AR, Tsai LT, Heberlein U
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002 Dec 15;22(24):11035-44

    Understanding how ethanol influences behavior is key to deciphering the mechanisms of ethanol action and alcoholism. In mammals, low doses of ethanol stimulate locomotion, whereas high doses depress it. The acute stimulant effect of ethanol has been proposed to be a manifestation of its rewarding effects. In Drosophila, ethanol exposure transiently potentiates locomotor activity in a biphasic dose- and time-dependent manner. An initial short-lived peak of activity corresponds to an olfactory response to ethanol. A second, longer-lasting period of increased activity coincides with rising internal ethanol concentrations; these closely parallel concentrations that stimulate locomotion in mammals. High-resolution analysis of the walking pattern of individual flies revealed that locomotion consists of bouts of activity; bout structure can be quantified by bout frequency, bout length, and the time spent walking at high speeds. Ethanol exposure induces both dramatic and dynamic changes in bout structure. Mutants with increased ethanol sensitivity show distinct changes in ethanol-induced locomotor behavior, as well as genotype-specific changes in activity bout structure. Thus, the overall effect of ethanol on locomotor behavior in Drosophila is caused by changes in discrete quantifiable parameters of walking pattern. The effects of ethanol on locomotion are comparable in flies and mammals, suggesting that Drosophila is a suitable model system to study the underlying mechanisms.

    View Publication Page
    12/01/02 | Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion.
    Rothenfluh A, Heberlein U
    Current Opinion in Neurobiology. 2002 Dec;12(6):639-45

    Drosophila melanogaster has been introduced recently as a model organism in which to study the mechanisms by which drugs of abuse change behavior and by which the nervous system changes upon repeated drug exposure. Surprising similarities between flies and mammals have begun to emerge at the behavioral, neurochemical and molecular levels.

    View Publication Page
    Tjian Lab
    11/28/02 | TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila.
    Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R
    Nature. 2002 Nov 28;420(6914):439-45. doi: 10.1073/pnas.1100640108

    Drosophila TATA-box-binding protein (TBP)-related factor 2 (TRF2) is a member of a family of TBP-related factors present in metazoan organisms. Recent evidence suggests that TRF2s are required for proper embryonic development and differentiation. However, true target promoters and the mechanisms by which TRF2 operates to control transcription remain elusive. Here we report the antibody affinity purification of a Drosophila TRF2-containing complex that contains components of the nucleosome remodelling factor (NURF) chromatin remodelling complex as well as the DNA replication-related element (DRE)-binding factor DREF. This latter finding led us to potential target genes containing TRF2-responsive promoters. We have used a combination of in vitro and in vivo assays to show that the DREF-containing TRF2 complex directs core promoter recognition of the proliferating cell nuclear antigen (PCNA) gene. We also identified additional TRF2-responsive target genes involved in DNA replication and cell proliferation. These data suggest that TRF2 functions as a core promoter-selectivity factor responsible for coordinating transcription of a subset of genes in Drosophila.

    View Publication Page
    11/15/02 | A stimulus generating system for studying wind sensation in the American cockroach.
    Rinberg D, Davidowitz H
    Journal of Neuroscience Methods. 2002 Nov 15;121(1):1-11. doi: 10.1523/JNEUROSCI.3613-08.2008

    A novel system for the generation and measurement of a two dimensional wind stimulus is proposed and described. This system was used to investigate the wind sensation of the American cockroach. The new aspects of this system are (a) a pair of computer driven wind tunnels that are shown to produce non-turbulent flows and (b) a novel fiber optic wind detector that measures both amplitude and direction of the wind. Winds can be produced and measured in behaviorally relevant frequency and amplitude ranges without perturbing the airflow. The combination of both the wind generation system and wind detector makes the system very flexible and allows the generation of stimuli with any given spectrum. The two dimensional wind stimulus is shown to be very reproducible. The wind detector is independent of the wind generation system so it can be used for measuring natural winds as well. Experimental data obtained on the cockroach are presented.

    View Publication Page
    11/09/02 | A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children.
    Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, Pole A, Coon H, Kariuki S, Nahlen BL, Mwaikambo ED, Lal AL, Granger DL, Anstey NM, Weinberg JB
    Lancet. 2002 Nov 9;360(9344):1468-75. doi: 10.1016/S0140-6736(02)11474-7

    Nitric oxide (NO) is a mediator of immunity to malaria, and genetic polymorphisms in the promoter of the inducible NO synthase gene (NOS2) could modulate production of NO. We postulated that NOS2 promoter polymorphisms would affect resistance to severe malaria.

    View Publication Page
    11/01/02 | Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila.
    Rodan AR, Kiger JA, Heberlein U
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002 Nov 1;22(21):9490-501

    Ethanol has complex but similar effects on behavior in mammals and the fruit fly Drosophila melanogaster. In addition, genetic and pharmacological approaches have implicated the cAMP pathway in the regulation of ethanol-induced behaviors in both flies and rodents. Here we examine the neuroanatomical loci that modulate ethanol sensitivity in Drosophila by targeting the expression of an inhibitor of cAMP-dependent protein kinase (PKA) to specific regions in the fly’s brain. Expression of the inhibitor in most brain regions or in muscle has no effect on behavior. In contrast, inhibition of PKA in a relatively small number of cells, possibly neurosecretory cells, in the fly’s brain is sufficient to decrease sensitivity to the incoordinating effects of ethanol. Additional brain areas are, however, also involved. The mushroom bodies, brain structures where cAMP signaling is required for olfactory classical conditioning, are dispensable for the regulation of ethanol sensitivity. Finally, different behavioral effects of ethanol, motor incoordination and sedation, appear to be regulated by PKA function in distinct brain regions. We conclude that the regulation of ethanol-induced behaviors by PKA involves complex interactions among groups of cells that mediate either increased or reduced sensitivity to the acute intoxicating effects of ethanol.

    View Publication Page
    11/01/02 | Haemozoin as a marker of placental parasitization.
    McGready R, Brockman A, Cho T, Levesque MA, Tkachuk AN, Meshnick SR, Nosten Fc
    Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002 Nov-Dec;96(6):644-6

    Both Plasmodium vivax and P. falciparum malaria can cause the delivery of low birthweight babies. In this report, we have quantitated haemozoin levels in placentas from women living on the Thai-Burmese border in a region of low transmission for both P. falciparum and P. vivax malaria from June 1995 to January 2000. P. falciparum malaria infections during pregnancy lead to the accumulation of haemozoin (malaria pigment) in the placenta, especially in infections near term and in primigravid pregnancies. Haemozoin concentration was not associated with adverse birth outcomes. Women with P. vivax infections during pregnancy do not have measurable levels of placental haemozoin suggesting that P. vivax-infected erythrocytes do not accumulate in the placenta as much as P. falciparum-infected ones.

    View Publication Page
    10/25/02 | Network motifs: simple building blocks of complex networks.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U
    Science. 2002 Oct 25;298(5687):824-7

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined “network motifs,” patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

    View Publication Page