Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

67 Publications

Showing 1-10 of 67 results
Your Criteria:
    12/30/05 | Segregation of the brain into gray and white matter: a design minimizing conduction delays.
    Wen Q, Chklovskii DB
    PLoS Computational Biology. 2005 Dec;1(7):e78. doi: 10.1371/journal.pcbi.1001066

    A ubiquitous feature of the vertebrate anatomy is the segregation of the brain into white and gray matter. Assuming that evolution maximized brain functionality, what is the reason for such segregation? To answer this question, we posit that brain functionality requires high interconnectivity and short conduction delays. Based on this assumption we searched for the optimal brain architecture by comparing different candidate designs. We found that the optimal design depends on the number of neurons, interneuronal connectivity, and axon diameter. In particular, the requirement to connect neurons with many fast axons drives the segregation of the brain into white and gray matter. These results provide a possible explanation for the structure of various regions of the vertebrate brain, such as the mammalian neocortex and neostriatum, the avian telencephalon, and the spinal cord.

    View Publication Page
    Tjian Lab
    12/29/05 | In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets.
    Zhai W, Jeong H, Cui L, Krainc D, Tjian R
    Cell. 2005 Dec 29;123(7):1241-53. doi: 10.1073/pnas.1100640108

    Transcriptional dysregulation has emerged as a potentially important pathogenic mechanism in Huntington’s disease, a neurodegenerative disorder associated with polyglutamine expansion in the huntingtin (htt) protein. Here, we report the development of a biochemically defined in vitro transcription assay that is responsive to mutant htt. We demonstrate that both gene-specific activator protein Sp1 and selective components of the core transcription apparatus, including TFIID and TFIIF, are direct targets inhibited by mutant htt in a polyglutamine-dependent manner. The RAP30 subunit of TFIIF specifically interacts with mutant htt both in vitro and in vivo to interfere with formation of the RAP30-RAP74 native complex. Importantly, overexpression of RAP30 in cultured primary striatal cells protects neurons from mutant htt-induced cellular toxicity and alleviates the transcriptional inhibition of the dopamine D2 receptor gene by mutant htt. Our results suggest a mutant htt-directed repression mechanism involving multiple specific components of the basal transcription apparatus.

    View Publication Page
    12/21/05 | How to find decision makers in neural networks.
    Koulakov AA, Rinberg DA, Tsigankov DN
    Biological Cybernetics. 2005 Dec;93(6):447-62. doi: 10.1523/JNEUROSCI.3613-08.2008

    Nervous systems often face the problem of classifying stimuli and making decisions based on these classifications. The neurons involved in these tasks can be characterized as sensory or motor, according to their correlation with sensory stimulus or motor response. In this study we define a third class of neurons responsible for making perceptual decisions. Our mathematical formalism enables the weighting of neuronal units according to their contribution to decision making, thus narrowing the field for more detailed studies of underlying mechanisms. We develop two definitions of a contribution to decision making. The first definition states that decision making activity can be found at the points of emergence for behavioral correlations in the system. The second definition involves the study of propagation of noise in the network. The latter definition is shown to be equivalent to the first one in the cases when they can be compared. Our results suggest a new approach to analyzing decision making networks.

    View Publication Page
    12/08/05 | Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons.
    Jarsky T, Roxin A, Kath WL, Spruston N
    Nat Neurosci. 2005 Dec;8(12):1667-76. doi: 10.1038/nn1599

    The perforant-path projection to the hippocampus forms synapses in the apical tuft of CA1 pyramidal neurons. We used computer modeling to examine the function of these distal synaptic inputs, which led to three predictions that we confirmed in experiments using rat hippocampal slices. First, activation of CA1 neurons by the perforant path is limited, a result of the long distance between these inputs and the soma. Second, activation of CA1 neurons by the perforant path depends on the generation of dendritic spikes. Third, the forward propagation of these spikes is unreliable, but can be facilitated by modest activation of Schaffer-collateral synapses in the upper apical dendrites. This 'gating' of dendritic spike propagation may be an important activation mode of CA1 pyramidal neurons, and its modulation by neurotransmitters or long-term, activity-dependent plasticity may be an important feature of dendritic integration during mnemonic processing in the hippocampus.

    View Publication Page
    Karpova LabSvoboda Lab
    12/08/05 | Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons.
    Karpova AY, Tervo DG, Gray NW, Svoboda K
    Neuron. 2005 Dec 8;48(5):727-35. doi: 10.1016/j.neuron.2005.11.015

    Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.

    View Publication Page
    12/01/05 | A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB.
    Tian L, Holmgren RA, Matouschek A
    Nature Structural & Molecular Biology. 2005 Dec;12(12):1045-53. doi: 10.1038/nsmb1018

    The proteasome degrades some proteins, such as transcription factors Cubitus interruptus (Ci) and NF-kappaB, to generate biologically active protein fragments. Here we have identified and characterized the signals in the substrate proteins that cause this processing. The minimum signal consists of a simple sequence preceding a tightly folded domain in the direction of proteasome movement. The strength of the processing signal depends primarily on the complexity of the simple sequence rather than on amino acid identity, the resistance of the folded domain to unraveling by the proteasome and the spacing between the simple sequence and folded domain. We show that two unrelated transcription factors, Ci and NF-kappaB, use this mechanism to undergo partial degradation by the proteasome in vivo. These findings suggest that the mechanism is conserved evolutionarily and that processing signals may be widespread in regulatory proteins.

    View Publication Page
    Gonen Lab
    12/01/05 | Lipid-protein interactions in double-layered two-dimensional AQP0 crystals.
    Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T
    Nature. 2005 Dec 1;438(7068):633-8. doi: 10.1038/nature04321

    Lens-specific aquaporin-0 (AQP0) functions as a specific water pore and forms the thin junctions between fibre cells. Here we describe a 1.9 A resolution structure of junctional AQP0, determined by electron crystallography of double-layered two-dimensional crystals. Comparison of junctional and non-junctional AQP0 structures shows that junction formation depends on a conformational switch in an extracellular loop, which may result from cleavage of the cytoplasmic amino and carboxy termini. In the centre of the water pathway, the closed pore in junctional AQP0 retains only three water molecules, which are too widely spaced to form hydrogen bonds with each other. Packing interactions between AQP0 tetramers in the crystalline array are mediated by lipid molecules, which assume preferred conformations. We were therefore able to build an atomic model for the lipid bilayer surrounding the AQP0 tetramers, and we describe lipid-protein interactions.

    View Publication Page
    12/01/05 | Pleiotropic functions of a conserved insect-specific Hox peptide motif.
    Hittinger CT, Stern DL, Carroll SB
    Development. 2005 Dec;132(23):5261-70. doi: 10.1242/dev.02146

    The proteins that regulate developmental processes in animals have generally been well conserved during evolution. A few cases are known where protein activities have functionally evolved. These rare examples raise the issue of how highly conserved regulatory proteins with many roles evolve new functions while maintaining old functions. We have investigated this by analyzing the function of the ;QA' peptide motif of the Hox protein Ultrabithorax (Ubx), a motif that has been conserved throughout insect evolution since its establishment early in the lineage. We precisely deleted the QA motif at the endogenous locus via allelic replacement in Drosophila melanogaster. Although the QA motif was originally characterized as involved in the repression of limb formation, we have found that it is highly pleiotropic. Curiously, deleting the QA motif had strong effects in some tissues while barely affecting others, suggesting that QA function is preferentially required for a subset of Ubx target genes. QA deletion homozygotes had a normal complement of limbs, but, at reduced doses of Ubx and the abdominal-A (abd-A) Hox gene, ectopic limb primordia and adult abdominal limbs formed when the QA motif was absent. These results show that redundancy and the additive contributions of activity-regulating peptide motifs play important roles in moderating the phenotypic consequences of Hox protein evolution, and that pleiotropic peptide motifs that contribute quantitatively to several functions are subject to intense purifying selection.

    View Publication Page
    11/21/05 | Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system.
    Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, Stelzer EH, Knop M
    The Journal of Cell Biology. 2005 Nov 21;171(4):627-40. doi: 10.1083/jcb.200507168

    Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.

    View Publication Page
    11/07/05 | Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse.
    Hantman AW, Perl ER
    Journal of Computational Neuroscience. 2005 Nov 7;492(1):90-100. doi: doi: 10.1002/cne.20709

    Genetic incorporation in a mouse of a transgene containing the prion promoter and the green fluorescent protein (GFP) coding sequence labels a set of substantia gelatinosa (SG) neurons (SG-GFP) homogenous in morphology, electrophysiology, and γ-amino-butyric acid expression. In the present analysis the SG-GFP neurons are established to have protein kinase C-βII immunoreactivity and to lack evidence for the presence of calbindin D-28k, parvalbumin, and protein kinase C-γ. These neurons were hyperpolarized by mediators of descending control, norepinephrine and serotonin. Sequential polymerase chain reactions established the insertion of the transgene to be in the receptor protein tyrosine phosphatase kappa (RPTP-κ) and the laminin receptor 1 (ribosomal protein SA) pseudogene 1 locus. RPTP-κ expression in both GFP-labeled dorsal root ganglia and SG neurons raises the possibility that homophilic interactions of RPTP-κ contribute to establishment of connections between specific classes of primary afferent and SG neurons.

    View Publication Page