Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

140 Publications

Showing 91-100 of 140 results
Your Criteria:
    03/28/08 | Markov random field based automatic image alignment for electron tomography.
    Amat F, Moussavi F, Comolli LR, Elidan G, Downing KH, Horowitz M
    Journal of Structural Biology. 2008 Mar 28;161(3):260-75. doi: 10.1016/j.jsb.2007.07.007

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

    View Publication Page
    Magee Lab
    03/27/08 | Compartmentalized dendritic plasticity and input feature storage in neurons.
    Losonczy A, Makara JK, Magee JC
    Nature. 2008 Mar 27;452(7186):436-41. doi: 10.1038/nature06725

    Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this ’branch strength potentiation’ represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored.

    View Publication Page
    Fetter Lab
    03/25/08 | Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction.
    Heerssen H, Fetter RD, Davis GW
    Current Biology. 2008 Mar 25;18(6):401-9. doi: 10.1016/j.cub.2008.02.055

    BACKGROUND: Among the most prominent molecular constituents of a recycling synaptic vesicle is the clathrin triskelion, composed of clathrin light chain (Clc) and clathrin heavy chain (Chc). Remarkably, it remains unknown whether clathrin is strictly necessary for the stimulus-dependent re-formation of a synaptic vesicle and, conversely, whether clathrin-independent vesicle endocytosis exists at the neuronal synapse.

    RESULTS: We employ FlAsH-FALI-mediated protein photoinactivation to rapidly (3 min) and specifically disrupt Clc function at the Drosophila neuromuscular junction. We first demonstrate that Clc photoinactivation does not impair synaptic-vesicle fusion. We then provide electrophysiological and ultrastructural evidence that synaptic vesicles, once fused with the plasma membrane, cannot be re-formed after Clc photoinactivation. Finally, we demonstrate that stimulus-dependent membrane internalization occurs after Clc photoinactivation. However, newly internalized membrane fails to resolve into synaptic vesicles. Rather, newly internalized membrane forms large and extensive internal-membrane compartments that are never observed at a wild-type synapse.

    CONCLUSIONS: We make three major conclusions. (1) FlAsH-FALI-mediated protein photoinactivation rapidly and specifically disrupts Clc function with no effect on synaptic-vesicle fusion. (2) Synaptic-vesicle re-formation does not occur after Clc photoinactivation. By extension, clathrin-independent "kiss-and-run" endocytosis does not sustain synaptic transmission during a stimulus train at this synapse. (3) Stimulus-dependent, clathrin-independent membrane internalization exists at this synapse, but it is unable to generate fusion-competent, small-diameter synaptic vesicles.

    View Publication Page
    03/20/08 | Bright ideas for chemical biology.
    Lavis LD, Raines RT
    ACS Chemical Biology. 2008 Mar 20;3:142-55. doi: 10.1021/cb700248m

    Small-molecule fluorescent probes embody an essential facet of chemical biology. Although numerous compounds are known, the ensemble of fluorescent probes is based on a modest collection of modular "core" dyes. The elaboration of these dyes with diverse chemical moieties is enabling the precise interrogation of biochemical and biological systems. The importance of fluorescence-based technologies in chemical biology elicits a necessity to understand the major classes of small-molecule fluorophores. Here, we examine the chemical and photophysical properties of oft-used fluorophores and highlight classic and contemporary examples in which utility has been built upon these scaffolds.

    View Publication Page
    Zuker Lab
    03/20/08 | Preserving cell shape under environmental stress.
    Cook B, Hardy RW, McConnaughey WB, Zuker CS
    Nature. 2008 Mar 20;452(7185):361-4. doi: 10.1038/nature06603

    Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defence against physically and chemically induced deformation. We studied the mechanical impact of Spam coating and show that spam-coated cells are up to ten times stiffer than uncoated controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge.

    View Publication Page
    Fitzgerald Lab
    03/19/08 | Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment.
    Kent A, Jha AK, Fitzgerald JE, Freed KF
    The journal of physical chemistry. B. 2008 May 15;112(19):6175-86. doi: 10.1021/jp077099h

    A pathogenetic feature of Alzhemier disease is the aggregation of monomeric beta-amyloid proteins (Abeta) to form oligomers. Usually these oligomers of long peptides aggregate on time scales of microseconds or longer, making computational studies using atomistic molecular dynamics models prohibitively expensive and making it essential to develop computational models that are cheaper and at the same time faithful to physical features of the process. We benchmark the ability of our implicit solvent model to describe equilibrium and dynamic properties of monomeric Abeta(10-35) using all-atom Langevin dynamics (LD) simulations, since Alphabeta(10-35) is the only fragment whose monomeric properties have been measured. The accuracy of the implicit solvent model is tested by comparing its predictions with experiment and with those from a new explicit water MD simulation, (performed using CHARMM and the TIP3P water model) which is approximately 200 times slower than the implicit water simulations. The dependence on force field is investigated by running multiple trajectories for Alphabeta(10-35) using the CHARMM, OPLS-aal, and GS-AMBER94 force fields, whereas the convergence to equilibrium is tested for each force field by beginning separate trajectories from the native NMR structure, a completely stretched structure, and from unfolded initial structures. The NMR order parameter, S2, is computed for each trajectory and is compared with experimental data to assess the best choice for treating aggregates of Alphabeta. The computed order parameters vary significantly with force field. Explicit and implicit solvent simulations using the CHARMM force fields display excellent agreement with each other and once again support the accuracy of the implicit solvent model. Alphabeta(10-35) exhibits great flexibility, consistent with experiment data for the monomer in solution, while maintaining a general strand-loop-strand motif with a solvent-exposed hydrophobic patch that is believed to be important for aggregation. Finally, equilibration of the peptide structure requires an implicit solvent LD simulation as long as 30 ns.

    View Publication Page
    Svoboda Lab
    03/19/08 | Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators.
    Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K
    PLoS One. 2008 Mar 19;3(3):e1796. doi: 10.1371/journal.pone.0001796

    Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo.

    View Publication Page
    03/19/08 | Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling.
    Knott G, Marchman H, Wall D, Lich B
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Mar 19;28(12):2959-64. doi: 10.1523/JNEUROSCI.3189-07.2008
    03/15/08 | Phenylglycine and phenylalanine derivatives as potent and selective HDAC1 inhibitors (SHI-1).
    Wilson KJ, Witter DJ, Grimm JB, Siliphaivanh P, Otte KM, Kral AM, Fleming JC, Harsch A, Hamill JE, Cruz JC, Chenard M, Szewczak AA, Middleton RE, Hughes BL, Dahlberg WK, Secrist JP, Miller TA
    Bioorganic & Medicinal Chemistry Letters. 2008 Mar 15;18(6):1859-63. doi: 10.1016/j.bmcl.2008.02.012

    An HTS screening campaign identified a series of low molecular weight phenols that showed excellent selectivity (>100-fold) for HDAC1/HDAC2 over other Class I and Class II HDACs. Evolution and optimization of this HTS hit series provided HDAC1-selective (SHI-1) compounds with excellent anti-proliferative activity and improved physical properties. Dose-dependent efficacy in a mouse HCT116 xenograft model was demonstrated with a phenylglycine SHI-1 analog.

    View Publication Page
    Svoboda Lab
    03/13/08 | Genetic dissection of neural circuits.
    Luo L, Callaway EM, Svoboda K
    Neuron. 2008 Mar 13;57:634-60. doi: 10.1016/j.neuron.2008.01.002

    Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.

    View Publication Page