Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

236 Publications

Showing 231-236 of 236 results
Your Criteria:
    01/01/14 | Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
    Ramade A, Legant WR, Picart C, Chen CS, Boudou T
    Methods in Cell Biology. 2014;121:191-211. doi: 10.1016/B978-0-12-800281-0.00013-0

    Engineered tissues can be used to understand fundamental features of biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged tissue in vivo. However, a key limitation is an inability to test the wide range of parameters that might impact the engineered tissue in a high-throughput manner and in an environment that mimics the three-dimensional (3D) native architecture. We developed a microfabricated platform to generate arrays of microtissues embedded within 3D micropatterned matrices. Microcantilevers simultaneously constrain microtissue formation and report forces generated by the microtissues in real time, opening the possibility to use high-throughput, low-volume screening for studies on engineered tissues. Thanks to the micrometer scale of the microtissues, this platform is also suitable for high-throughput monitoring of drug-induced effect on architecture and contractility in engineered tissues. Moreover, independent variations of the mechanical stiffness of the cantilevers and collagen matrix allow the measurement and manipulation of the mechanics of the microtissues. Thus, our approach will likely provide valuable opportunities to elucidate how biomechanical, electrical, biochemical, and genetic/epigenetic cues modulate the formation and maturation of 3D engineered tissues. In this chapter, we describe the microfabrication, preparation, and experimental use of such microfabricated tissue gauges.

    View Publication Page
    Fetter Lab
    01/01/14 | Nanometer-resolution fluorescence electron microscopy (nano-EM) in cultured cells.
    Watanabe S, Lehmann M, Hujber E, Fetter RD, Richards J, Söhl-Kielczynski B, Felies A, Rosenmund C, Schmoranzer J, Jorgensen EM
    Methods in Molecular Biology. 2014;1117:503-26. doi: 10.1007/978-1-62703-776-1_22

    Nano-resolution fluorescence electron microscopy (nano-fEM) pinpoints the location of individual proteins in electron micrographs. Plastic sections are first imaged using a super-resolution fluorescence microscope and then imaged on an electron microscope. The two images are superimposed to correlate the position of labeled proteins relative to subcellular structures. Here, we describe the method in detail and present five technical advancements: the use of uranyl acetate during the freeze-substitution to enhance the contrast of tissues and reduce the loss of fluorescence, the use of ground-state depletion instead of photoactivation for temporal control of fluorescence, the use of organic fluorophores instead of fluorescent proteins to obtain brighter fluorescence signals, the use of tissue culture cells to broaden the utility of the method, and the use of a transmission electron microscope to achieve sharper images of ultrastructure.

    View Publication Page
    01/01/14 | Pfam: the protein families database.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Sean R. Eddy , Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M
    Nucleic acids research. 2014 Jan;42:D222-30. doi: 10.1093/nar/gkt1223

    Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.

    View Publication Page
    Svoboda Lab
    01/01/14 | Procedures for behavioral experiments in head-fixed mice.
    Guo ZV, Hires SA, Li N, O’Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S, Xu N, Cox J, Svoboda K
    PLoS One. 2014;9:e88678. doi: 10.1371/journal.pone.0088678

    The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings.

    View Publication Page
    01/01/14 | Structural basis for the prion-like MAVS filaments in antiviral innate immunity.
    Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang Q
    eLife. 2014 Jan 1;3:e01489. doi: 10.7554/eLife.01489

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001.

    View Publication Page
    Riddiford Lab
    01/01/14 | The developmental control of size in insects.
    Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V
    Wiley Interdisciplinary Reviews: Developmental Biology. 2014 Jan/Feb;3(1):113-34. doi: 10.1002/wdev.124

    The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse. WIREs Dev Biol 2014, 3:113–134. doi: 10.1002/wdev.124

    View Publication Page