Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

207 Publications

Showing 71-80 of 207 results
Your Criteria:
    08/25/16 | Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.
    Zhang X, Zhang M, Li D, He W, Peng J, Betzig E, Xu P
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Aug 25;113(37):10364-9. doi: 10.1073/pnas.1611038113

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm(2)) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view.

    View Publication Page
    Sternson Lab
    08/22/16 | Functional and anatomical dissection of feeding circuits.
    Atasoy D, Sternson SM
    Neuroendocrinology of Appetite:112-133. doi: 10.1002/9781118839317.ch6

    This chapter reviews the application of new genetically encoded tools in feeding circuits that regulate appetite. Rapid activation and inhibition of agouti related peptide (AgRP) neurons conclusively established a causal role for rapid control of food intake. Chemogenetic activation of AgRP neurons using hM3Dq avoids the invasive protocols required for ChR2 activation. ChR2 distributes into axons, and selective optogenetic activation of AgRP neuron axon projection fields in distinct brain areas was used to examine their individual contribution to feeding behavior. Some of the brain areas targeted by AgRP neuron axon projections have been examined further for cell type specific control of appetite. Rodents with bed nucleus of stria terminalis (BNST) lesions show hyperphagia and obesity, indicating that reduced BNST output promotes feeding. pro-opiomelanocortin (POMC) neurons regulate feeding over longer timescales. parabrachial nucleus (PBN) neurons have a powerful inhibitory role on food intake, but their inhibition does not strongly elevate food intake.

    View Publication Page
    08/17/16 | Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy.
    Aguet F, Upadhyayula S, Gaudin R, Chou Y, Cocucci E, He K, Chen B, Mosaliganti K, Pasham M, Skillern W, Legant WR, Liu T, Findlay G, Marino E, Danuser G, Megason S, Betzig E, Kirchhausen T
    Molecular Biology of the Cell. 2016 Aug 17;27(22):3418-35. doi: 10.1091/mbc.E16-03-0164

    Membrane remodeling is an essential part for transfer of components to and from the cell surface and membrane-bound organelles, and for changes in cell shape, particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging, mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and non-invasive illumination of the newly developed lattice light sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and showed that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and remained relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and in multicellular assemblies.

    View Publication Page
    08/17/16 | Satb2 stations neurons along reflex arcs.
    Hantman AW, Kaltschmidt JA
    Neuron. 2016 Aug 17;91(4):711-3. doi: 10.1016/j.neuron.2016.08.005

    The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.

    The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.

    View Publication Page
    08/10/16 | Natural courtship song variation caused by an intronic retroelement in an ion channel gene.
    Ding Y, Berrocal A, Morita T, Longden KD, Stern DL
    Nature. 2016 Aug 10:. doi: 10.1038/nature19093

    Animal species display enormous variation for innate behaviours, but little is known about how this diversity arose. Here, using an unbiased genetic approach, we map a courtship song difference between wild isolates of Drosophila simulans and Drosophila mauritiana to a 966 base pair region within the slowpoke (slo) locus, which encodes a calcium-activated potassium channel. Using the reciprocal hemizygosity test, we confirm that slo is the causal locus and resolve the causal mutation to the evolutionarily recent insertion of a retroelement in a slo intron within D. simulans. Targeted deletion of this retroelement reverts the song phenotype and alters slo splicing. Like many ion channel genes, slo is expressed widely in the nervous system and influences a variety of behaviours; slo-null males sing little song with severely disrupted features. By contrast, the natural variant of slo alters a specific component of courtship song, illustrating that regulatory evolution of a highly pleiotropic ion channel gene can cause modular changes in behaviour.

    View Publication Page
    08/09/16 | A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right.
    Koyama M, Minale F, Shum J, Nishimura N, Schaffer CB, Fetcho JR
    Elife. 2016 08 09;5:. doi: 10.7554/eLife.16808

    Animals collect sensory information from the world and make adaptive choices about how to respond to it. Here, we reveal a network motif in the brain for one of the most fundamental behavioral choices made by bilaterally symmetric animals: whether to respond to a sensory stimulus by moving to the left or to the right. We define network connectivity in the hindbrain important for the lateralized escape behavior of zebrafish and then test the role of neurons by using laser ablations and behavioral studies. Key inhibitory neurons in the circuit lie in a column of morphologically similar cells that is one of a series of such columns that form a developmental and functional ground plan for building hindbrain networks. Repetition within the columns of the network motif we defined may therefore lie at the foundation of other lateralized behavioral choices.

    View Publication Page
    08/05/16 | Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons.
    Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G
    eLife. 2016 Aug 5;5:. doi: 10.7554/eLife.17495

    Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.

    View Publication Page
    08/03/16 | Real-time imaging of Huntingtin aggregates diverting target search and gene transcription.
    Li L, Liu H, Dong P, Li D, Legant WR, Grimm JB, Lavis LD, Betzig E, Tjian R, Liu Z
    eLife. 2016 Aug 03;5:. doi: 10.7554/eLife.17056

    The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells - 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells.

    View Publication Page
    08/01/16 | Midbody remnant licenses primary cilia formation in epithelial cells.
    Ott CM
    The Journal of Cell Biology. 2016 Aug 1;214(3):237-9. doi: 10.1083/jcb.201607046

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol supports this emerging model.

    View Publication Page
    07/29/16 | Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion.
    Hasegawa E, Truman JW, Nose A
    Scientific Reports. 2016;6:30806. doi: 10.1038/srep30806

    We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, combined action of which likely regulates patterned motor activity during locomotion. Although recent studies identified candidate inhibitory premotor interneurons, the identity of premotor interneurons that provide excitatory drive to motor neurons during locomotion remains unknown. In this study, we searched for and identified two putative excitatory premotor interneurons in this system, termed CLI1 and CLI2 (cholinergic lateral interneuron 1 and 2). These neurons were segmentally arrayed and activated sequentially from the posterior to anterior segments during peristalsis. Consistent with their being excitatory premotor interneurons, the CLIs formed GRASP- and ChAT-positive putative synapses with motoneurons and were active just prior to motoneuronal firing in each segment. Moreover, local activation of CLI1s induced contraction of muscles in the corresponding body segments. Taken together, our results suggest that the CLIs directly activate motoneurons sequentially along the segments during larval locomotion.

    View Publication Page