Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

192 Publications

Showing 21-30 of 192 results
Your Criteria:
    11/17/22 | RS-FISH: Precise, interactive, fast, and scalable FISH spot detection
    Ella Bahry , Laura Breimann , Marwan Zouinkhi , Leo Epstein , Klim Kolyvanov , Xi Long , Kyle I S Harrington , Timothée Lionnet , Stephan Preibisch
    Nature Methods. 2022 Nov 17;19(12):1563-7. doi: 10.1038/s41592-022-01669-y

    Fluorescent in-situ hybridization (FISH)-based methods are powerful tools to study molecular processes with subcellular resolution, relying on accurate identification and localization of diffraction-limited spots in microscopy images. We developed the Radial Symmetry-FISH (RS-FISH) software that accurately, robustly, and quickly detects single-molecule spots in two and three dimensions, making it applicable to several key assays, including single-molecule FISH (smFISH), spatial transcriptomics, and spatial genomics. RS-FISH allows interactive parameter tuning and scales to large sets of images as well as tera-byte sized image volumes such as entire brain scans using straight-forward distributed processing on workstations, clusters, and in the cloud.

    View Publication Page
    11/15/22 | Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in .
    Hendi A, Niu L, Snow AW, Ikegami R, Wang Z, Mizumoto K
    eLife. 2022 Nov 15;11:. doi: 10.7554/eLife.80555

    Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in , in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.

    View Publication Page
    11/13/22 | Brain-wide measurement of protein turnover with high spatial and temporal resolution
    Boaz Mohar , Jonathan B. Grimm , Ronak Patel , Timothy A. Brown , Paul Tillberg , Luke D. Lavis , Nelson Spruston , Karel Svoboda
    bioRxiv. 2022 Nov 13:. doi: 10.1101/2022.11.12.516226

    Cells regulate function by synthesizing and degrading proteins. This turnover ranges from minutes to weeks, as it varies across proteins, cellular compartments, cell types, and tissues. Current methods for tracking protein turnover lack the spatial and temporal resolution needed to investigate these processes, especially in the intact brain, which presents unique challenges. We describe a pulse-chase method (DELTA) for measuring protein turnover with high spatial and temporal resolution throughout the body, including the brain. DELTA relies on rapid covalent capture by HaloTag of fluorophores that were optimized for bioavailability in vivo. The nuclear protein MeCP2 showed brain region- and cell type-specific turnover. The synaptic protein PSD95 was destabilized in specific brain regions by behavioral enrichment. A novel variant of expansion microscopy further facilitated turnover measurements at individual synapses. DELTA enables studies of adaptive and maladaptive plasticity in brain-wide neural circuits.

    View Publication Page
    07/21/10 | Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE, Chiu DT
    Lab Chip. 07/2010;10(14):1873-7. doi: 10.1039/c001108h

    This paper describes a platform for cooling microfluidic chips so as to freeze aqueous droplets flowing in oil. Using a whole-chip cooling chamber, we can control the ambient temperature surrounding a microfluidic chip and induce cooling and freezing inside the channels. When combined with a droplet generation and droplet docking chip, this platform allows for the facile freezing of droplets immobilized in resistance-based docks. Depending on the design and shape of the docks, the frozen droplets can either be trapped stably in the docks or be released because deformed non-frozen aqueous droplets turn spherical when frozen, and thus can become dislodged from the docks. Additionally, using this chamber and chip combination we are able to exchange immiscible phases and surfactants surrounding the frozen droplets. The materials and methods are inexpensive and easily accessible to microfluidics researchers, making this a simple addition to an existing microfluidic platform.

    View Publication Page
    11/10/22 | Efficient Gene Knockout in Salivary Gland Epithelial Explant Cultures
    R. Sekiguchi , M.M. Mehlferber , K. Matsumoto , S. Wang
    Journal of Dental Research. 11/2022;102:197-206. doi: 10.1177/00220345221128201

    We have developed methods to achieve efficient CRISPR-Cas9–mediated gene knockout in ex vivo mouse embryonic salivary epithelial explants. Salivary epithelial explants provide a valuable model for characterizing cell signaling, differentiation, and epithelial morphogenesis, but research has been limited by a paucity of efficient gene perturbation methods. Here, we demonstrate highly efficient gene perturbation by transient transduction of guide RNA–expressing lentiviruses into Cas9-expressing salivary epithelial buds isolated from Cas9 transgenic mice. We first show that salivary epithelial explants can be cultured in low-concentration, nonsolidified Matrigel suspensions in 96-well plates, which greatly increases sample throughput compared to conventional cultures embedded in solidified Matrigel. We further show that salivary epithelial explants can grow and branch with FGF7 alone, while supplementing with insulin, transferrin, and selenium (ITS) enhances growth and branching. We then describe an efficient workflow to produce experiment-ready, high-titer lentiviruses within 1 wk after molecular cloning. To track transduced cells, we designed the lentiviral vector to coexpress a nuclear fluorescent reporter with the guide RNA. We routinely achieved 80% transduction efficiency when antibiotic selection was used. Importantly, we detected robust loss of targeted protein products when testing 9 guide RNAs for 3 different genes. Moreover, targeting the β1 integrin gene (Itgb1) inhibited branching morphogenesis, which supports the importance of cell–matrix adhesion in driving branching morphogenesis. In summary, we have established a lentivirus-based method that can efficiently perturb genes of interest in salivary epithelial explants, which will greatly facilitate studies of specific gene functions using this system.

    View Publication Page
    11/10/22 | Robotic Multi-Probe-Single-Actuator Inchworm Neural Microdrive
    Smith R, Kolb I, Tanaka S, Lee A, Harris T, Barbic M
    eLife. 2022 Nov 10:. doi: 10.7554/eLife.71876

    Electrophysiology is one of the major experimental techniques used in neuroscience. The favorable spatial and temporal resolution as well as the increasingly larger site counts of brain recording electrodes contribute to the popularity and importance of electrophysiology in neuroscience. Such electrodes are typically mechanically placed in the brain to perform acute or chronic freely moving animal measurements. The micro positioners currently used for such tasks employ a single translator per independent probe being placed into the targeted brain region, leading to significant size and weight restrictions. To overcome this limitation, we have developed a miniature robotic multi-probe neural microdrive that utilizes novel phase-change-material-filled resistive heater micro-grippers. The microscopic dimensions, gentle gripping action, independent electronic actuation control, and high packing density of the grippers allow for micrometer-precision independent positioning of multiple arbitrarily shaped parallel neural electrodes with only a single piezo actuator in an inchworm motor configuration. This multi-probe-single-actuator design allows for significant size and weight reduction, as well as remote control and potential automation of the microdrive. We demonstrate accurate placement of multiple independent recording electrodes into the CA1 region of the rat hippocampus in vivo in acute and chronic settings. Thus, our robotic neural microdrive technology is applicable towards basic neuroscience and clinical studies, as well as other multi-probe or multi-sensor micro-positioning applications.

    View Publication Page
    11/09/23 | De novo protein identification in mammalian sperm using high-resolution in situ cryo-electron tomography
    Zhen Chen , Momoko Shiozaki , Kelsey M. Haas , Shumei Zhao , Caiying Guo , Benjamin J. Polacco , Zhiheng Yu , Nevan J. Krogan , Robyn M. Kaake , Ronald D. Vale , David A. Agard
    Cell. 2023 Nov 09;186(23):5041-5053.e19. doi: 10.1016/j.cell.2023.09.017

    Understanding molecular mechanisms of cellular pathways requires knowledge of the identities of participating proteins, their cellular localization and their 3D structures. Contemporary workflows typically require multiple techniques to identify target proteins, track their localization using fluorescence microscopy, followed by in vitro structure determination. To identify mammal-specific sperm proteins and understand their functions, we developed a visual proteomics workflow to directly address these challenges. Our in situ cryo-electron tomography and subtomogram averaging provided 6.0 Å resolution reconstructions of axonemal microtubules and their associated proteins. The well-resolved secondary and tertiary structures allowed us to computationally match, in an unbiased manner, novel densities in our 3D reconstruction maps with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105 and SPACA9 as novel microtubule inner proteins that form an extensive network crosslinking the lumen of microtubule and existing proteins. Additional biochemical and mass spectrometry analyses helped validate potential candidates. The novel axonemal sperm structures identified by this approach form an extensive interaction network within the lumen of microtubules, suggesting they have a role in the mechanical and elastic properties of the microtubule filaments required for the vigorous beating motions of flagella.

    View Publication Page
    11/08/22 | Human primed and naïve PSCs are both able to differentiate into trophoblast stem cells.
    Viukov S, Shani T, Bayerl J, Aguilera-Castrejon A, Oldak B, Sheban D, Tarazi S, Stelzer Y, Hanna JH, Novershtern N
    Stem Cell Reports. 11/2022;17(11):2484-2500. doi: 10.1016/j.stemcr.2022.09.008

    The recent derivation of human trophoblast stem cells (TSCs) from placental cytotrophoblasts and blastocysts opened opportunities for studying the development and function of the human placenta. Recent reports have suggested that human naïve, but not primed, pluripotent stem cells (PSCs) retain an exclusive potential to generate TSCs. Here we report that, in the absence of WNT stimulation, transforming growth factor β (TGF-β) pathway inhibition leads to direct and robust conversion of primed human PSCs into TSCs. The resulting primed PSC-derived TSC lines exhibit self-renewal, can differentiate into the main trophoblast lineages, and present RNA and epigenetic profiles that are indistinguishable from recently established TSC lines derived from human placenta, blastocysts, or isogenic human naïve PSCs expanded under human enhanced naïve stem cell medium (HENSM) conditions. Activation of nuclear Yes-associated protein (YAP) signaling is sufficient for this conversion and necessary for human TSC maintenance. Our findings underscore a residual plasticity in primed human PSCs that allows their in vitro conversion into extra-embryonic trophoblast lineages.

    View Publication Page
    11/08/22 | Robust cell identity specifications through transitions in the collective state of growing developmental systems
    Stanoev A, Koseska A
    Current Opinion in Systems Biology. 2022 Nov 08;31:100437. doi: 10.1016/j.coisb.2022.100437

    Mammalian development is characterized with transitions from homogeneous populations of precursor to heterogeneous population of specified cells. We review here the main dynamical mechanisms through which such transitions are conceptualized, and discuss that the differentiation timing, robust cell-type proportions and recovery upon perturbation are emergent property of proliferating and communicating cell populations. We argue that studying developmental systems using transitions in collective system states is necessary to describe observed experimental features, and propose additionally the basis of a novel analytical method to deduce the relationship between single-cell dynamics and the collective, symmetry-broken states in cellular populations.

    View Publication Page
    11/07/22 | Cellpose 2.0: how to train your own model.
    Pachitariu M, Stringer C
    Nature Methods. 2022 Nov 07;19(12):1634-41. doi: 10.1038/s41592-022-01663-4

    Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

    View Publication Page