Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

192 Publications

Showing 91-100 of 192 results
Your Criteria:
    07/22/22 | Brain structure and synaptic protein expression alterations after antidepressant treatment in a Wistar-Kyoto rat model of depression.
    Li Q, Gao Y, Li H, Liu H, Wang D, Pan W, Liu S, Xu Y
    Journal of Affective Disorders. 2022 Jul 22;314:293-302. doi: 10.1016/j.jad.2022.07.037

    BACKGROUND: Structural MRI has demonstrated brain alterations in depression pathology and antidepressants treatment. While synaptic plasticity has been previously proposed as the potential underlying mechanism of MRI findings at a cellular and molecular scale, there is still insufficient evidence to link the MRI findings and synaptic plasticity mechanisms in depression pathology.

    METHODS: In this study, a Wistar-Kyoto (WKY) depression rat model was treated with antidepressants (citalopram or Jie-Yu Pills) and tested in a series of behavioral tests and a 7.0 MRI scanner. We then measured dendritic spine density within altered brain regions. We also examined expression of synaptic marker proteins (PSD-95 and SYP).

    RESULTS: WKY rats exhibited depression-like behaviors in the sucrose preference test (SPT) and forced swim test (FST), and anxiety-like behaviors in the open field test (OFT). Both antidepressants reversed behavioral changes in SPT and OFT but not in FST. We found a correlation between SPT performance and brain volumes as detected by MRI. All structural changes were consistent with alterations of the corpus callosum (white matter), dendritic spine density, as well as PSD95 and SYP expression at different levels. Two antidepressants similarly reversed these macro- and micro-changes.

    LIMITATIONS: The single dose of antidepressants was the major limitation of this study. Further studies should focus on the white matter microstructure changes and myelin-related protein alterations, in addition to comparing the effects of ketamine.

    CONCLUSION: Translational evidence links structural MRI changes and synaptic plasticity alterations, which promote our understanding of SPT mechanisms and antidepressant response in WKY rats.

    View Publication Page
    07/20/22 | neuPrint: An open access tool for EM connectomics.
    Plaza SM, Clements J, Dolafi T, Umayam L, Neubarth NN, Scheffer LK, Berg S
    Frontiers in Neuroinformatics. 2022 Jul 20;16:896292. doi: 10.3389/fninf.2022.896292

    Due to advances in electron microscopy and deep learning, it is now practical to reconstruct a connectome, a description of neurons and the chemical synapses between them, for significant volumes of neural tissue. Smaller past reconstructions were primarily used by domain experts, could be handled by downloading data, and performance was not a serious problem. But new and much larger reconstructions upend these assumptions. These networks now contain tens of thousands of neurons and tens of millions of connections, with yet larger reconstructions pending, and are of interest to a large community of non-specialists. Allowing other scientists to make use of this data needs more than publication-it requires new tools that are publicly available, easy to use, and efficiently handle large data. We introduce neuPrint to address these data analysis challenges. Neuprint contains two major components-a web interface and programmer APIs. The web interface is designed to allow any scientist worldwide, using only a browser, to quickly ask and answer typical biological queries about a connectome. The neuPrint APIs allow more computer-savvy scientists to make more complex or higher volume queries. NeuPrint also provides features for assessing reconstruction quality. Internally, neuPrint organizes connectome data as a graph stored in a neo4j database. This gives high performance for typical queries, provides access though a public and well documented query language Cypher, and will extend well to future larger connectomics databases. Our experience is also an experiment in open science. We find a significant fraction of the readers of the article proceed to examine the data directly. In our case preprints worked exactly as intended, with data inquiries and PDF downloads starting immediately after pre-print publication, and little affected by formal publication later. From this we deduce that many readers are more interested in our data than in our analysis of our data, suggesting that data-only papers can be well appreciated and that public data release can speed up the propagation of scientific results by many months. We also find that providing, and keeping, the data available for online access imposes substantial additional costs to connectomics research.

    View Publication Page
    07/20/22 | Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code.
    Xie Q, Li J, Li H, Udeshi ND, Svinkina T, Orlin D, Kohani S, Guajardo R, Mani DR, Xu C, Li T, Han S, Wei W, Shuster SA, Luginbuhl DJ, Quake SR, Murthy SE, Ting AY, Carr SA, Luo L
    Neuron. 07/2022;110(14):2299-2314.e8. doi: 10.1016/j.neuron.2022.04.026

    Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.

    View Publication Page
    07/15/22 | Binding partners regulate unfolding of myosin VI to activate the molecular motor.
    Dos Santos Á, Fili N, Hari-Gupta Y, Gough RE, Wang L, Martin-Fernandez M, Arron J, Wait E, Chew TL, Toseland C
    The Biochemical Journal. 2022 Jul 15;479(13):1409-1428. doi: 10.1042/BCJ20220025

    Myosin VI is the only minus-end actin motor and is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single molecule imaging to investigate the impact of binding partners upon myosin VI molecular organisation and dynamics.

    View Publication Page
    07/14/22 | Using Simulated Training Data of Voxel-Level Generative Models to Improve 3D Neuron Reconstruction.
    Liu C, Wang D, Zhang H, Wu W, Sun W, Zhao T, Zheng N
    IEEE Transactions on Medical Imaging. 2022 Jul 14;PP:. doi: 10.1109/TMI.2022.3191011

    Reconstructing neuron morphologies from fluorescence microscope images plays a critical role in neuroscience studies. It relies on image segmentation to produce initial masks either for further processing or final results to represent neuronal morphologies. This has been a challenging step due to the variation and complexity of noisy intensity patterns in neuron images acquired from microscopes. Whereas progresses in deep learning have brought the goal of accurate segmentation much closer to reality, creating training data for producing powerful neural networks is often laborious. To overcome the difficulty of obtaining a vast number of annotated data, we propose a novel strategy of using two-stage generative models to simulate training data with voxel-level labels. Trained upon unlabeled data by optimizing a novel objective function of preserving predefined labels, the models are able to synthesize realistic 3D images with underlying voxel labels. We showed that these synthetic images could train segmentation networks to obtain even better performance than manually labeled data. To demonstrate an immediate impact of our work, we further showed that segmentation results produced by networks trained upon synthetic data could be used to improve existing neuron reconstruction methods.

    View Publication Page
    07/08/22 | Architecture and dynamics of a novel desmosome-endoplasmic reticulum organelle
    Navaneetha Krishnan Bharathan , William Giang , Jesse S. Aaron , Satya Khuon , Teng-Leong Chew , Stephan Preibisch , Eric T. Trautman , Larissa Heinrich , John Bogovic , Davis Bennett , David Ackerman , Woohyun Park , Alyson Petruncio , Aubrey V. Weigel , Stephan Saalfeld , COSEM Project Team , A. Wayne Vogl , Sara N. Stahley , Andrew P. Kowalczyk
    bioRxiv. 2022 Jul 08:. doi: 10.1101/2022.07.07.499185

    The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signaling, and lipid transfer. Using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometer proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization and mobility. These findings indicate that desmosomes and the keratin cytoskeleton pattern the distribution of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.

    View Publication Page
    07/08/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
    Kumar P, Lavis LD
    Annual Review Neuroscience. 2022 Jul 08;45:131-150. doi: 10.1146/annurev-neuro-110520-030031

    Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems.

    View Publication Page
    Romani LabSvoboda Lab
    07/08/22 | Neural Algorithms and Circuits for Motor Planning.
    Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K
    Annual Review Neuroscience. 2022 Jul 08;45:249-271. doi: 10.1146/annurev-neuro-092021-121730

    The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.

    View Publication Page
    07/06/22 | Taste quality interactions and transformations in a sensorimotor circuit
    Philip K. Shiu , Gabriella R. Sterne , Stefanie Engert , Barry J. Dickson , Kristin Scott
    eLife. 2022 Jul 06:. doi: 10.1101/2022.03.06.483180

    Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most of the neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Hunger signals act at select second-order neurons to increase feeding initiation in food-deprived animals. In contrast, a bitter taste pathway inhibits premotor neurons, illuminating a central mechanism that weighs sugar and bitter tastes to promote or inhibit feeding. Together, these studies reveal the neural circuit basis for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.

    View Publication Page
    07/04/22 | Visualizing Synaptic Dopamine Efflux with a 2D Nanofilm.
    Chandima Bulumulla , Andrew T. Krasley , Deepika Walpita , Abraham G. Beyene
    eLife. 2022 Jul 04:. doi: 10.7554/eLife.78773

    Chemical neurotransmission constitutes one of the fundamental modalities of communication between neurons. Monitoring release of these chemicals has traditionally been difficult to carry out at spatial and temporal scales relevant to neuron function. To understand chemical neurotransmission more fully, we need to improve the spatial and temporal resolutions of measurements for neurotransmitter release. To address this, we engineered a chemi-sensitive, two-dimensional nanofilm that facilitates subcellular visualization of the release and diffusion of the neurochemical dopamine with synaptic resolution, quantal sensitivity, and simultaneously from hundreds of release sites. Using this technology, we were able to monitor the spatiotemporal dynamics of dopamine release in dendritic processes, a poorly understood phenomenon. We found that dopamine release is broadcast from a subset of dendritic processes as hotspots that have a mean spatial spread of ≈3.2 µm (full width at half maximum) and are observed with a mean spatial frequency of 1 hotspot per ≈7.5 µm of dendritic length. Major dendrites of dopamine neurons and fine dendritic processes, as well as dendritic arbors and dendrites with no apparent varicose morphology participated in dopamine release. Remarkably, these release hotspots colocalized with Bassoon, suggesting that Bassoon may contribute to organizing active zones in dendrites, similar to its role in axon terminals.

    View Publication Page