Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

87 Publications

Showing 21-30 of 87 results
Your Criteria:
    Fetter LabTruman LabZlatic LabCardona Lab
    08/09/17 | The complete connectome of a learning and memory centre in an insect brain.
    Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Zlatic M, Cardona A
    Nature. 2017 Aug 09;548(7666):175-182. doi: 10.1038/nature23455

    Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.

    View Publication Page
    Fetter LabTruman LabZlatic LabCardona Lab
    08/08/17 | Organization of the drosophila larval visual circuit.
    Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG
    eLife. 2017 Aug 8:e28387. doi: 10.7554/eLife.28387

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

    View Publication Page
    Truman LabZlatic Lab
    07/01/17 | The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae.
    Almeida-Carvalho MJ, Berh D, Braun A, Chen Y, Eichler K, Eschbach C, Fritsch PM, Gerber B, Hoyer N, Jiang X, Kleber J, Klämbt C, König C, Louis M, Michels B, Miroschnikow A, Mirth C, Miura D, Niewalda T, Otto N, Paisios E, Pankratz MJ, Petersen M, Ramsperger N, Randel N, Risse B, Saumweber T, Schlegel P, Schleyer M, Soba P, Sprecher SG, Tanimura T, Thum AS, Toshima N, Truman JW, Yarali A, Zlatic M
    The Journal of Experimental Biology. 2017 Jul 01;220(Pt 13):2452-2475. doi: 10.1242/jeb.156646

    Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.

    View Publication Page
    Truman LabRiddiford Lab
    05/18/17 | Genetic tools to study juvenile hormone action in Drosophila.
    Baumann AA, Texada MJ, Chen H, Etheredge JN, Miller DL, Picard S, Warner RD, Truman JW, Riddiford LM
    Scientific Reports. 2017 May 18;7:2132. doi: 10.1038/s41598-017-02264-4

    The insect juvenile hormone receptor is a basic helix-loop-helix (bHLH), Per-Arnt-Sim (PAS) domain protein, a novel type of hormone receptor. In higher flies like Drosophila, the ancestral receptor germ cell-expressed (gce) gene has duplicated to yield the paralog Methoprene-tolerant (Met). These paralogous receptors share redundant function during development but play unique roles in adults. Some aspects of JH function apparently require one receptor or the other. To provide a foundation for studying JH receptor function, we have recapitulated endogenous JH receptor expression with single cell resolution. Using Bacteria Artificial Chromosome (BAC) recombineering and a transgenic knock-in, we have generated a spatiotemporal expressional atlas of Metand gce throughout development. We demonstrate JH receptor expression in known JH target tissues, in which temporal expression corresponds with periods of hormone sensitivity. Larval expression largely supports the notion of functional redundancy. Furthermore, we provide the neuroanatomical distribution of JH receptors in both the larval and adult central nervous system, which will serve as a platform for future studies regarding JH action on insect behavior.

    View Publication Page
    04/26/17 | A systematic nomenclature for the Drosophila ventral nervous system.
    Court RC, Armstrong JD, Borner J, Card GM, Costa M, Dickinson MH, Duch C, Korff W, Mann RS, Merritt D, Murphey RK, Namiki S, Seeds AM, Shepherd D, Shirangi TR, Simpson JH, Truman JW, Tuthill JC, Williams DW
    bioRxiv. 2017 Apr 26:. doi: 10.1101/122952

    Insect nervous systems are proven and powerful model systems for neuroscience research with wide relevance in biology and medicine. However, descriptions of insect brains have suffered from a lack of a complete and uniform nomenclature. Recognising this problem the Insect Brain Name Working Group produced the first agreed hierarchical nomenclature system for the adult insect brain, using Drosophila melanogaster as the reference framework, with other insect taxa considered to ensure greater consistency and expandability (Ito et al., 2014). Ito et al. (2014) purposely focused on the gnathal regions that account for approximately 50% of the adult CNS. We extend this nomenclature system to the sub-gnathal regions of the adult Drosophila nervous system to provide a nomenclature of the so-called ventral nervous system (VNS), which includes the thoracic and abdominal neuromeres that was not included in the original work and contains the neurons that play critical roles underpinning most fly behaviours.

    View Publication Page
    Fetter LabTruman LabCardona Lab
    11/15/16 | Synaptic transmission parallels neuromodulation in a central food-intake circuit.
    Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ
    eLife. 2016 Nov 15:. doi: 10.7554/eLife.16799

    NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level.

    View Publication Page
    Zlatic LabCardona LabFetter LabTruman LabScientific Computing Software
    10/05/16 | Competitive disinhibition mediates behavioral choice and sequences in Drosophila.
    Jovanic T, Schneider-Mizell CM, Shao M, Masson J, Denisov G, Fetter RD, Mensh BD, Truman JW, Cardona A, Zlatic M
    Cell. 2016 Oct 5;167(3):858-70. doi: 10.1016/j.cell.2016.09.009

    Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.

    View Publication Page
    08/05/16 | Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons.
    Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G
    eLife. 2016 Aug 5;5:. doi: 10.7554/eLife.17495

    Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.

    View Publication Page
    07/29/16 | Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion.
    Hasegawa E, Truman JW, Nose A
    Scientific Reports. 2016;6:30806. doi: 10.1038/srep30806

    We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, combined action of which likely regulates patterned motor activity during locomotion. Although recent studies identified candidate inhibitory premotor interneurons, the identity of premotor interneurons that provide excitatory drive to motor neurons during locomotion remains unknown. In this study, we searched for and identified two putative excitatory premotor interneurons in this system, termed CLI1 and CLI2 (cholinergic lateral interneuron 1 and 2). These neurons were segmentally arrayed and activated sequentially from the posterior to anterior segments during peristalsis. Consistent with their being excitatory premotor interneurons, the CLIs formed GRASP- and ChAT-positive putative synapses with motoneurons and were active just prior to motoneuronal firing in each segment. Moreover, local activation of CLI1s induced contraction of muscles in the corresponding body segments. Taken together, our results suggest that the CLIs directly activate motoneurons sequentially along the segments during larval locomotion.

    View Publication Page
    Truman LabCardona Lab
    07/12/16 | Selective inhibition mediates the sequential recruitment of motor pools.
    Zwart MF, Pulver SR, Truman JW, Fushiki A, Cardona A, Landgraf M
    Neuron. 2016 Jul 12;91(3):615-28. doi: 10.1016/j.neuron.2016.06.031

    Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.

    View Publication Page