Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

87 Publications

Showing 61-70 of 87 results
Your Criteria:
    05/15/07 | Molecular patterning mechanism underlying metamorphosis of the thoracic leg in Manduca sexta.
    Tanaka K, Truman JW
    Developmental Biology. 2007 May 15;305(2):539-50. doi: 10.1016/j.ydbio.2007.02.042

    The tobacco hornworm Manduca sexta, like many holometabolous insects, makes two versions of its thoracic legs. The simple legs of the larva are formed during embryogenesis, but then are transformed into the more complex adult legs at metamorphosis. To elucidate the molecular patterning mechanism underlying this biphasic development, we examined the expression patterns of five genes known to be involved in patterning the proximal-distal axis in insect legs. In the developing larval leg of Manduca, the early patterning genes Distal-less and Extradenticle are already expressed in patterns comparable to the adult legs of other insects. In contrast, Bric-a-brac and dachshund are expressed in patterns similar to transient patterns observed during early stages of leg development in Drosophila. During metamorphosis of the leg, the two genes finally develop mature expression patterns. Our results are consistent with the hypothesis that the larval leg morphology is produced by a transient arrest in the conserved adult leg patterning process in insects. In addition, we find that, during the adult leg development, some cells in the leg express the patterning genes de novo suggesting that the remodeling of the leg involves changes in the patterning gene regulation.

    View Publication Page
    10/01/06 | Local caspase activity directs engulfment of dendrites during pruning.
    Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW
    Nature Neuroscience. 2006 Oct;9(10):1234-6. doi: 10.1038/nn1774

    Pruning is important for sculpting neural circuits, as it removes excessive or inaccurate projections. Here we show that the removal of sensory neuron dendrites during pruning in Drosophila melanogaster is directed by local caspase activity. Suppressing caspase activity prevented dendrite removal, whereas a global activation of caspases within a neuron caused cell death. A new genetically encoded caspase probe revealed that caspase activity is confined to the degenerating dendrites of pruning neurons.

    View Publication Page
    Truman LabRiddiford Lab
    06/02/06 | Juvenile hormone is required to couple imaginal disc formation with nutrition in insects.
    Truman JW, Hiruma K, Allee JP, Macwhinnie SG, Champlin DT, Riddiford LM
    Science . 2006 Jun 2;312(5778):1385-8. doi: 10.1126/science.1123652

    In starved larvae of the tobacco hornworm moth Manduca sexta, larval and imaginal tissues stop growing, the former because they lack nutrient-dependent signals but the latter because of suppression by juvenile hormone. Without juvenile hormone, imaginal discs form and grow despite severe starvation. This hormone inhibits the intrinsic signaling needed for disc morphogenesis and does so independently of ecdysteroid action. Starvation and juvenile hormone treatments allowed the separation of intrinsic and nutrient-dependent aspects of disc growth and showed that both aspects must occur during the early phases of disc morphogenesis to ensure normal growth leading to typical-sized adults.

    View Publication Page
    Riddiford LabTruman Lab
    05/02/06 | The pupal specifier broad directs progressive morphogenesis in a direct-developing insect.
    Erezyilmaz DF, Riddiford LM, Truman JW
    Proceedings of the National Academy of Sciences of the United States of America. 2006 May 2;103:6925-30. doi: 10.1073/pnas.0509983103

    A key regulatory gene in metamorphosing (holometabolous) insect life histories is the transcription factor broad (br), which specifies pupal development. To determine the role of br in a direct-developing (hemimetabolous) insect that lacks a pupal stage, we cloned br from the milkweed bug, Oncopeltus fasciatus (Of’br). We find that, unlike metamorphosing insects, in which br expression is restricted to the larval-pupal transition, Of’br mRNA is expressed during embryonic development and is maintained at each nymphal molt but then disappears at the molt to the adult. Induction of a supernumerary nymphal stage with a juvenile hormone (JH) mimic prevented the disappearance of br mRNA. In contrast, induction of a precocious adult molt by application of precocene II to third-stage nymphs caused a loss of br mRNA at the precocious adult molt. Thus, JH is necessary to maintain br expression during the nymphal stages. Injection of Of’br dsRNA into either early third- or fourth-stage nymphs caused a repetition of stage-specific pigmentation patterns and prevented the normal anisometric growth of the wing pads without affecting isometric growth or molting. Therefore, br is necessary for the mutable (heteromorphic) changes that occur during hemimetabolous development. Our results suggest that metamorphosis in insects arose as expression of br, which conveys competence for change, became restricted to one postembryonic instar. After this shift in br expression, the progressive changes that occur within the nymphal series in basal insects became compressed to the one short period of morphogenesis seen in the larva-to-pupa transition of holometabolous insects.

    View Publication Page
    Truman LabRiddiford Lab
    10/25/05 | The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster.
    Mirth C, Truman JW, Riddiford LM
    Current Biology. 2005 Oct 25;15(20):1796-807. doi: 10.1016/j.cub.2005.09.017

    The timely onset of metamorphosis in holometabolous insects depends on their reaching the appropriate size known as critical weight. Once critical weight is reached, juvenile hormone (JH) titers decline, resulting in the release of prothoracicotropic hormone (PTTH) at the next photoperiod gate and thereby inducing metamorphosis. How individuals determine when they have reached critical weight is unknown. We present evidence that in Drosophila, a component of the ring gland, the prothoracic gland (PG), assesses growth to determine when critical weight has been achieved.

    View Publication Page
    08/01/05 | Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons.
    Williams DW, Truman JW
    Development. 2005 Aug;132(16):3631-42. doi: 10.1242/dev.01928

    Regressive events that refine exuberant or inaccurate connections are critical in neuronal development. We used multi-photon, time-lapse imaging to examine how dendrites of Drosophila dendritic arborizing (da) sensory neurons are eliminated during early metamorphosis, and how intrinsic and extrinsic cellular mechanisms control this deconstruction. Removal of the larval dendritic arbor involves two mechanisms: local degeneration and branch retraction. In local degeneration, major branch severing events entail focal disruption of the microtubule cytoskeleton, followed by thinning of the disrupted region, severing and fragmentation. Retraction was observed at distal tips of branches and in proximal stumps after severing events. The pruning program of da neuron dendrites is steroid induced; cell-autonomous dominant-negative inhibition of steroid action blocks local degeneration, although retraction events still occur. Our data suggest that steroid-induced changes in the epidermis may contribute to dendritic retraction. Finally, we find that phagocytic blood cells not only engulf neuronal debris but also attack and sever intact branches that show signs of destabilization.

    View Publication Page
    10/01/04 | Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila.
    Truman JW, Schuppe H, Shepherd D, Williams DW
    Development. 2004 Oct;131(20):5167-84. doi: 10.1242/dev.01371

    In Drosophila most thoracic neuroblasts have two neurogenic periods: an initial brief period during embryogenesis and a second prolonged phase during larval growth. This study focuses on the adult-specific neurons that are born primarily during the second phase of neurogenesis. The fasciculated neurites arising from each cluster of adult-specific neurons express the cell-adhesion protein Neurotactin and they make a complex scaffold of neurite bundles within the thoracic neuropils. Using MARCM clones, we identified the 24 lineages that make up the scaffold of a thoracic hemineuromere. Unlike the early-born neurons that are strikingly diverse in both form and function, the adult specific cells in a given lineage are remarkably similar and typically project to only one or two initial targets, which appear to be the bundled neurites from other lineages. Correlated changes in the contacts between the lineages in different segments suggest that these initial contacts have functional significance in terms of future synaptic partners. This paper provides an overall view of the initial connections that eventually lead to the complex connectivity of the bulk of the thoracic neurons.

    View Publication Page
    Truman LabRiddiford Lab
    03/01/04 | Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells.
    Zhou X, Zhou B, Truman JW, Riddiford LM
    The Journal of Experimental Biology. 2004 Mar;207(Pt 7):1151-61

    Insect molting is triggered by ecdysteroids, which are produced in the prothoracic glands (PG). The broad (br) gene is one of the ’early genes’ directly regulated by ecdysteroids. Ectopic expression of the BR-Z3 isoform in early second instar Drosophila larvae (L2) before the rise of the ecdysteroid titer prevented molting to the third instar, but the larvae subsequently formed L2 prepupae after prolonged feeding. When these larvae were fed on diet containing 20-hydroxyecdysone (20E), they formed pharate third instar larvae. The critical weight for normal L3 pupariation of w(1118) larvae was found to be 0.8 mg and that for L2 pupariation was 0.45 mg. We also defined a threshold weight for metamorphosis of 0.3 mg, above which L2 larvae will metamorphose when provided with 20E. BR-Z3 apparently works through the PG cells of the ring gland but not the putative neurosecretory cells that drive ecdysone secretion, because ectopic expression of BR-Z3 specifically in the ring gland caused 53% of the larvae to become permanent first instar larvae. Driving other BR isoforms in the ring gland prevented larval molting or pupariation to varying degrees. These molting defects were rescued by feeding 20E. Overexpression of each of the BR isoforms caused degeneration of the PG cells but on different time courses, indicating that BR is a signal for the degeneration of the PG cells that normally occurs during the pupal-adult transition.

    View Publication Page
    Truman LabRiddiford Lab
    06/01/03 | E74 exhibits stage-specific hormonal regulation in the epidermis of the tobacco hornworm, manduca sexta.
    Stilwell GE, Nelson CA, Weller J, Cui H, Hiruma K, Truman JW, Riddiford LM
    Developmental Biology. 2003 Jun 1;258(1):76-90

    The transcription factor E74 is one of the early genes induced by ecdysteroids during metamorphosis of Drosophila melanogaster. Here, we report the cloning and hormonal regulation of E74 from the tobacco hornworm, Manduca sexta (MsE74). MsE74 is 98% identical to that of D. melanogaster within the DNA-binding ETS domain of the protein. The 5’-isoform-specific regions of MsE74A and MsE74B share significantly lower sequence similarity (30-40%). Developmental expression by Northern blot analysis reveals that, during the 5th larval instar, MsE74B expression correlates with pupal commitment on day 3 and is induced to maximal levels within 12h by low levels of 20-hydroxyecdysone (20E) and repressed by physiologically relevant levels of juvenile hormone I (JH I). Immunocytochemical analysis shows that MsE74B appears in the epidermis before the 20E-induced Broad transcription factor that is correlated with pupal commitment (Zhou and Riddiford, 2001). In contrast, MsE74A is expressed late in the larval and the pupal molts when the ecdysteroid titer has declined to low levels and in the adult molt just as the ecdysteroid titer begins to decline. This change in timing during the adult molt appears not to be due to the absence of JH as there was no change during the pupal molt of allatectomized animals. When either 4th or 5th instar larval epidermis was explanted and subjected to hormonal manipulations, MsE74A induction occurred only after exposure to 20E followed by its removal. Thus, MsE74B appears to have a similar role at the onset of metamorphosis in Manduca as it does in Drosophila, whereas MsE74A is regulated differently at pupation in Manduca than at pupariation in Drosophila.

    View Publication Page

    Adult insects achieve their final form shortly after adult eclosion by the combined effects of specialized behaviors that generate increased blood pressure, which causes cuticular expansion, and hormones, which plasticize and then tan the cuticle. We examined the molecular mechanisms contributing to these processes in Drosophila by analyzing mutants for the rickets gene. These flies fail to initiate the behavioral and tanning processes that normally follow ecdysis. Sequencing of rickets mutants and STS mapping of deficiencies confirmed that rickets encodes the glycoprotein hormone receptor DLGR2. Although rickets mutants produce and release the insect-tanning hormone bursicon, they do not melanize when injected with extracts containing bursicon. In contrast, mutants do melanize in response to injection of an analog of cyclic AMP, the second messenger for bursicon. Hence, rickets appears to encode a component of the bursicon response pathway, probably the bursicon receptor itself. Mutants also have a behavioral deficit in that they fail to initiate the behavioral program for wing expansion. A set of decapitation experiments utilizing rickets mutants and flies that lack cells containing the neuropeptide eclosion hormone, reveals a multicomponent control to the activation of this behavioral program.

    View Publication Page