Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

35 Publications

Showing 11-20 of 35 results
Your Criteria:
    10/16/24 | Rastermap: a discovery method for neural population recordings
    Carsen Stringer , Lin Zhong , Atika Syeda , Fengtong Du , Marius Pachitariu
    Nat. Neurosci.. 2024 Oct 16:. doi: 10.1038/s41593-024-01783-4

    Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers listening to spikes in real time and noticing patterns of activity related to ongoing stimuli or behaviors. With the advent of large-scale recordings, such close observation of data has become difficult. To find patterns in large-scale neural data, we developed 'Rastermap', a visualization method that displays neurons as a raster plot after sorting them along a one-dimensional axis based on their activity patterns. We benchmarked Rastermap on realistic simulations and then used it to explore recordings of tens of thousands of neurons from mouse cortex during spontaneous, stimulus-evoked and task-evoked epochs. We also applied Rastermap to whole-brain zebrafish recordings; to wide-field imaging data; to electrophysiological recordings in rat hippocampus, monkey frontal cortex and various cortical and subcortical regions in mice; and to artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.

    View Publication Page
    09/20/24 | A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging.
    Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER
    Nat Methods. 2024 Sep 20:. doi: 10.1038/s41592-024-02411-6

    Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).

    View Publication Page
    06/05/24 | Spatial transcriptomics reveals human cortical layer and area specification
    Qian X, Coleman K, Jiang S, Kriz AJ, Marciano JH, Luo C, Cai C, Manam MD, Caglayan E, Otani A, Ghosh U, Shao DD, Andersen RE, Neil JE, Johnson R, LeFevre A, Hecht JL, Miller MB, Sun L, Stringer C, Li M, Walsh CA
    Nature. 2025 May 14:. doi: 10.1038/s41586-025-09010-1

    The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.

     

    Preprint: https://www.biorxiv.org/content/early/2024/06/10/2024.06.05.597673

    View Publication Page
    04/08/24 | Spike sorting with Kilosort4
    Pachitariu M, Sridhar S, Pennington J, Stringer C
    Nat Methods. 2024 Apr 08:. doi: 10.1038/s41592-024-02232-7

    Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

    View Publication Page
    04/07/24 | Transformers do not outperform Cellpose
    Carsen Stringer , Marius Pachitariu
    bioRxiv. 2024 Apr 7:. doi: 10.1101/2024.04.06.587952

    In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.

    View Publication Page
    01/30/24 | Distributed fMRI dynamics predict distinct EEG rhythms across sleep and wakefulness.
    Leandro P. L. Jacob , Sydney M. Bailes , Stephanie D. Williams , Carsen Stringer , Laura D. Lewis
    bioRxiv. 2024 Jan 30:. doi: 10.1101/2024.01.29.577429

    The brain exhibits rich oscillatory dynamics that vary across tasks and states, such as the EEG oscillations that define sleep. These oscillations play critical roles in cognition and arousal, but the brainwide mechanisms underlying them are not yet described. Using simultaneous EEG and fast fMRI in subjects drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI dynamics predict alpha (8-12 Hz) and delta (1-4 Hz) rhythms. We predicted moment-by-moment EEG power from fMRI activity in held-out subjects, and found that information about alpha power was represented by a remarkably small set of regions, segregated in two distinct networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify distributed networks that predict delta and alpha rhythms, and establish a computational framework for investigating fMRI brainwide dynamics underlying EEG oscillations.

    View Publication Page
    11/20/23 | Facemap: a framework for modeling neural activity based on orofacial tracking
    Atika Syeda , Lin Zhong , Renee Tung , Will Long , Marius Pachitariu , Carsen Stringer
    Nature Neuroscience. 2023 Nov 20:. doi: 10.1038/s41593-023-01490-6

    Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracking algorithm and a deep neural network encoder for predicting neural activity. We used the Facemap keypoints as input for the deep neural network to predict the activity of ∼50,000 simultaneously-recorded neurons and in visual cortex we doubled the amount of explained variance compared to previous methods. Our keypoint tracking algorithm was more accurate than existing pose estimation tools, while the inference speed was several times faster, making it a powerful tool for closed-loop behavioral experiments. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used Facemap to find that the neuronal activity clusters which were highly driven by behaviors were more spatially spread-out across cortex. We also found that the deep keypoint features inferred by the model had time-asymmetrical state dynamics that were not apparent in the raw keypoint data. In summary, Facemap provides a stepping stone towards understanding the function of the brainwide neural signals and their relation to behavior.

    View Publication Page
    11/01/23 | Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope.
    Lovelace JW, Ma J, Yadav S, Chhabria K, Shen H, Pang Z, Qi T, Sehgal R, Zhang Y, Bali T, Vaissiere T, Tan S, Liu Y, Rumbaugh G, Ye L, Kleinfeld D, Stringer C, Augustine V
    Nature. 2023 Nov 01;623(7986):387-396. doi: 10.1038/s41586-023-06680-7

    Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders. The Bezold-Jarisch reflex (BJR), first described in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.

    View Publication Page
    01/07/23 | Solving the spike sorting problem with Kilosort
    Marius Pachitariu , Shashwat Sridhar , Carsen Stringer
    bioRxiv. 2023 Jan 07:. doi: 10.1101/2023.01.07.523036

    Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, complicated by the non-stationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To solve the spike sorting problem, we have continuously developed over the past eight years a framework known as Kilosort. This paper describes the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a new version with substantially improved performance due to new clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework which uses densely sampled electrical fields from real experiments to generate non-stationary spike waveforms and realistic noise. We find that nearly all versions of Kilosort outperform other algorithms on a variety of simulated conditions, and Kilosort4 performs best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

    View Publication Page
    11/07/22 | Cellpose 2.0: how to train your own model.
    Pachitariu M, Stringer C
    Nature Methods. 2022 Nov 07;19(12):1634-41. doi: 10.1038/s41592-022-01663-4

    Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

    View Publication Page