Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2368 Publications

Showing 21-30 of 2368 results
Your Criteria:
    10/19/23 | A comprehensive strategy to strengthen bioimaging in Africa through the Africa Microscopy Initiative.
    Reiche MA, Jacobs CA, Aaron JS, Mizrahi V, Warner DF, Chew T
    Nature Cell Biology. 2023 Oct 19;25(10):1387-1393. doi: 10.1038/s41556-023-01221-w
    10/18/23 | A blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
    Abhi Aggarwal , Smrithi Sunil , Imane Bendifallah , Michael Moon , Mikhail Drobizhev , Landon Zarowny , Jihong Zheng , Sheng-Yi Wu , Alexander W. Lohman , Alison G. Tebo , Valentina Emiliani , Kaspar Podgorski , Yi Shen , Robert E. Campbell
    bioRxiv. 2023 Oct 18:. doi: 10.1101/2023.10.12.562058

    Significance Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy.

    Aim We describe the development and applications of T-GECO1 – a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1.

    Approach We used protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices.

    Results The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant.

    Conclusion T-GECO1 is a high performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

    View Publication Page
    10/18/23 | Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch
    Annie Handler , Qiyu Zhang , Song Pang , Tri M. Nguyen , Michael Iskols , Michael Nolan-Tamariz , Stuart Cattel , Rebecca Plumb , Brianna Sanchez , Karyl Ashjian , Aria Shotland , Bartianna Brown , Madiha Kabeer , Josef Turecek , Genelle Rankin , Wangchu Xiang , Elisa C. Pavarino , Nusrat Africawala , Celine Santiago , Wei-Chung Allen Lee , C. Shan Xu , David D. Ginty
    Neuron. 2023 Oct 18:. doi: 10.1016/j.neuron.2023.08.023

    Specialized mechanosensory end organs within mammalian skin—hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles—enable our perception of light, dynamic touch1. In each of these end organs, fast-conducting mechanically sensitive neurons, called Aβ low-threshold mechanoreceptors (Aβ LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aβ LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli16. How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2715 and Aβ RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aβ RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aβ RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aβ RA-LTMR activation in which axon protrusions anchor Aβ RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.

    View Publication Page
    10/17/23 | A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity.
    Arthur Zhao , Aljoscha Nern , Sanna Koskela , Marisa Dreher , Mert Erginkaya , Connor W Laughland , Henrique DF Ludwig , Alex G Thomson , Judith Hoeller , Ruchi Parekh , Sandro Romani , Davi D Bock , Eugenia Chiappe , Michael B Reiser
    bioRxiv. 2023 Oct 17:. doi: 10.1101/2023.10.16.562634

    Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.

    View Publication Page
    10/17/23 | hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit
    Robert A Carrillo , Yupu Wang , Rio Salazar , Luciano Simonetta , Violet Sorrentino , Terrence J Gatton , Bill Wu , Christopher G Vecsey
    bioRxiv. 2023 Oct 17:. doi: 10.1101/2023.10.15.562341

    Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins (CSPs). In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth and cell survival. However, the upstream regulation and downstream signaling mechanisms of Dprs and DIPs are not clear. In the Drosophila larval neuromuscular system, DIP-α is expressed in the dorsal and ventral type-Is motor neurons (MNs). We conducted an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We found that the transcription factor, huckebein (hkb), genetically interacts with DIP-α and is important for target recognition specifically in the dorsal Is MN, but not the ventral Is MN. Loss of hkb led to complete removal of DIP-α expression. We then confirmed that this specificity is through the dorsal Is MN specific transcription factor, even-skipped (eve), which acts downstream of hkb. Genetic interaction between hkb and eve revealed that they act in the same pathway to regulate dorsal Is MN connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.

    View Publication Page
    10/16/23 | Ciliary localization of a light-activated neuronal GPCR shapes behavior.
    Winans AM, Friedmann D, Stanley C, Xiao T, Liu T, Chang CJ, Isacoff EY
    Proceedings of the National Academy of Sciences of the USA. 2023 Oct 16;120(43):e2311131120. doi: 10.1073/pnas.2311131120

    Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a G-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also G-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.

    View Publication Page
    10/16/23 | Optimized Red-Absorbing Dyes for Imaging and SensingOptimized Red-Absorbing Dyes for Imaging and Sensing
    Grimm JB, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD
    Journal of the American Chemical Society. 2023 Oct 16:. doi: 10.1021/jacs.3c0527310.1021/jacs.3c05273

    Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone–zwitterion equilibrium constant (KL–Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure–activity relationships that govern KL–Z. We discovered that the auxochrome substituent strongly affects the lactone–zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure–activity relationships that will guide the design of future probes.

    View Publication Page
    10/06/23 | Four-dimensional quantitative analysis of cell plate development using lattice light sheet microscopy identifies robust transition points between growth phases.
    Rosalie Sinclair , Minmin Wang , Zaki Jawaid , Jesse Aaron , Blair Rossetti , Eric Wait , Kent McDonald , Daniel Cox , John Heddleston , Thomas Wilkop , Georgia Drakakaki
    bioRxiv. 2023 Oct 06:. doi: 10.1101/2023.10.03.560767

    Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodeling, and timely polysaccharide deposition, such as callose. Such a dynamic process requires dissection in time and space; hence this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM) we studied cell plate development in four dimensions, monitored by the behavior of the cytokinesis specific GTPase RABA2a.

    We monitored the entire length of cell plate development, from its first emergence, with the aid of RABA2a, both in the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis, we identified distinct behavioral patterns allowing for the identification of three easily trackable, cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material.

    We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited phase transition, establishing quantitatively the critical role and timing of the polysaccharide in cell plate expansion and maturation.

    This study exemplifies the power of LLSM, combined with quantitative analysis to decode and untangle such a complex process.

    View Publication Page
    10/05/23 | Conjoint specification of action by neocortex and striatum.
    Junchol Park , Peter Polidoro , Catia Fortunato , Jon Arnold , Brett Mensh , Juan A. Gallego , Joshua T. Dudman
    bioRxiv. 2023 Oct 05:. doi: 10.1101/2023.10.04.560957

    The interplay between two major forebrain structures - cortex and subcortical striatum - is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated while the primary motor cortex is involved in the online control of movement execution. Recent data indicates that striatum may also be critical for specifying movement execution. These alternatives have been difficult to reconcile because when comparing very distinct actions, as in the vast majority of work to date, they make essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity during similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar, but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify flexible parameters of action during movement execution.

    View Publication Page
    10/06/23 | Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures.
    Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM
    Brain. 2023 Oct 03:. doi: 10.1093/brain/awad336

    Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.

    View Publication Page