Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2762 Publications

Showing 21-30 of 2762 results
Your Criteria:
    10/09/25 | Sexual dimorphism in the complete connectome of the <I>Drosophila</I> male central nervous system
    Berg S, Beckett IR, Costa M, Schlegel P, Januszewski M, Marin EC, Nern A, Preibisch S, Qiu W, Takemura S, Fragniere AM, Champion AS, Adjavon D, Cook M, Gkantia M, Hayworth KJ, Huang GB, Katz WT, Kämpf F, Lu Z, Ordish C, Paterson T, Stürner T, Trautman ET, Whittle CR, Burnett LE, Hoeller J, Li F, Loesche F, Morris BJ, Pietzsch T, Pleijzier MW, Silva V, Yin Y, Ali I, Badalamente G, Bates AS, Bogovic J, Brooks P, Cachero S, Canino BS, Chaisrisawatsuk B, Clements J, Crowe A, de Haan Vicente I, Dempsey G, Donà E, dos Santos M, Dreher M, Dunne CR, Eichler K, Finley-May S, Flynn MA, Hameed I, Hopkins GP, Hubbard PM, Kiassat L, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Longden KD, Maldonado CA, Mitletton M, Moitra I, Moon SS, Mooney C, Munnelly EJ, Okeoma N, Olbris DJ, Pai A, Patel B, Phillips EM, Plaza SM, Richards A, Rivas Salinas J, Roberts RJ, Rogers EM, Scott AL, Scuderi LA, Seenivasan P, Serratosa Capdevila L, Smith C, Svirskas R, Takemura S, Tastekin I, Thomson A, Umayam L, Walsh JJ, Whittome H, Xu CS, Yakal EA, Yang T, Zhao A, George R, Jain V, Jayaraman V, Korff W, Meissner GW, Romani S, Funke J, Knecht C, Saalfeld S, Scheffer LK, Waddell S, Card GM, Ribeiro C, Reiser MB, Hess HF, Rubin GM, Jefferis GS
    bioRxiv. 2025 Oct 09:. doi: 10.1101/2025.10.09.680999

    Sex differences in behaviour exist across the animal kingdom, typically under strong genetic regulation. In Drosophila, previous work has shown that fruitless and doublesex transcription factors identify neurons driving sexually dimorphic behaviour. However, the organisation of dimorphic neurons into functional circuits remains unclear.We now present the connectome of the entire Drosophila male central nervous system. This contains 166,691 neurons spanning the brain and ventral nerve cord, fully proofread and comprehensively annotated including fruitless and doublesex expression and 11,691 cell types. By comparison with a previous female brain connectome, we provide the first comprehensive description of the differences between male and female brains to synaptic resolution. Of 7,319 cross-matched cell types in the central brain, 114 are dimorphic with an additional 262 male- and 69 female-specific (totalling 4.8% of neurons in males and 2.4% in females).This resource enables analysis of full sensory-to-motor circuits underlying complex behaviours as well as the impact of dimorphic elements. Sex-specific and dimorphic neurons are concentrated in higher brain centres while the sensory and motor periphery are largely isomorphic. Within higher centres, male-specific connections are organised into hotspots defined by male-specific neurons or the presence of male-specific arbours on neurons that are otherwise similar between sexes. Numerous circuit switches reroute sensory information to form conserved, antagonistic circuits controlling opposing behaviours.

    View Publication Page
    10/03/25 | Chromosome scale genomes of two invasive Adelges species enable virtual screening for selective adelgicides.
    Glendening AM, Stephens C, Vuruputoor VS, Chaganti T, Myles MN, Stern DL, Abdelalim M, Juang Y, Hogenhout SA, Mathers TC, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC
    G3 (Bethesda). 2025 Oct 03:. doi: 10.1093/g3journal/jkaf232

    Two invasive adelgids are associated with widespread damage to several North American conifer species. Adelges tsugae, hemlock woolly adelgid, was introduced from Japan and reproduces parthenogenetically in North America, where it has rapidly decimated Tsuga canadensis and Tsuga caroliniana (eastern and Carolina hemlocks, respectively). Adelges abietis, eastern spruce gall adelgid, introduced from Europe, forms distinctive pineapple-shaped galls on several native spruce species. While not considered a major forest pest, it weakens trees and increases susceptibility to additional stressors. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects. Whole genome sequencing was performed on both species to aid in development of targeted solutions that may minimize ecological impact. Adelges abietis was sequenced using barcoded linked-reads from 30 pooled individuals, with Hi-C scaffolding performed using data from a single individual collected from the same host plant. Adelges tsugae used long-read sequencing from pooled nymphs. The assembled A. tsugae and A. abietis genomes, pooled from several parthenogenetic females, are 220.75 Mbp and 253.16 Mbp, respectively. Each consists of eight autosomal chromosomes, as well as two sex chromosomes (X1/X2), supporting the XX-XO sex determination system. The genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 12,060 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis of proteins across 29 hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family evolution analysis with CAFE revealed lineage-specific expansions in immune-related aminopeptidases (ERAP1) and juvenile hormone binding proteins (JHBP), contractions in juvenile hormone acid methyltransferases (JHAMT), and conservation of nicotinic acetylcholine receptors (nAChR). These genes were explored as candidate families towards a long-term objective of developing adelgid-selective insecticides. Structural comparisons of proteins across seven focal species (Adelges tsugae, Adelges abietis, Adelges cooleyi, Rhopalosiphum maidis, Apis mellifera, Danaus plexippus, and Drosophila melanogaster) revealed high conservation of nAChR and ERAP1, while JHAMT exhibited species-specific structural divergence. The potential of JHAMT as a lineage-specific target for pest control was explored through virtual screening of drugs and pesticides.

    bioRxiv preprint: https://doi.org/10.1101/2024.11.21.624573

    View Publication Page
    09/23/25 | Emergence of Functional Heart-Brain Circuits in a Vertebrate.
    Hernandez-Nunez L, Avrami J, Shi S, Markarian A, Boulanger-Weill J, Zarghani-Shiraz A, Ahrens M, Engert F, Fishman MC
    bioRxiv. 2025 Sep 23:. doi: 10.1101/2025.09.22.677693

    The early formation of sensorimotor circuits is essential for survival. While the development and function of exteroceptive circuits and their associated motor pathways are well characterized, far less is known about the circuits that convey viscerosensory inputs to the brain and transmit visceromotor commands from the central nervous system to internal organs. Technical limitations, such as the development of viscerosensory and visceromotor circuits and the invasiveness of procedures required to access them, have hindered studies of their functional development in mammals. Using larval zebrafish-which are genetically accessible and optically transparent-we tracked, , how cardiosensory and cardiomotor neural circuits assemble and begin to function. We uncovered a staged program. First, a minimal efferent circuit suffices for heart-rate control: direct brain-to-heart vagal motor innervation is required, intracardiac neurons are not, and heart rate is governed exclusively by the motor vagus nerve. Within the hindbrain, we functionally localize a vagal premotor population that drives this early efferent control. Second, sympathetic innervation arrives and enhances the dynamics and amplitude of cardiac responses, as neurons in the most anterior sympathetic ganglia acquire the ability to drive cardiac acceleration. These neurons exhibit proportional, integral, and derivative-like relationships to heart rate, consistent with controller motifs that shape gain and dynamics. Third, vagal sensory neurons innervate the heart. Distinct subsets increase activity when heart rate falls or rises, and across spontaneous fluctuations, responses to aversive stimuli, and optogenetically evoked cardiac perturbations, their dynamics are captured by a single canonical temporal kernel with neuron-specific phase offsets, supporting a population code for heart rate. This temporally segregated maturation isolates three experimentally tractable regimes-unidirectional brain-to-heart communication, dual efferent control, and closed-loop control after sensory feedback engages-providing a framework for mechanistic dissection of organism-wide heart-brain circuits.

    View Publication Page
    10/06/25 | Foraging as an ethological framework for neuroscience.
    Grima LL, Haberkern H, Mohanta R, Morimoto MM, Rajagopalan AE, Scholey EV
    Trends Neurosci. 2025 Oct 06:. doi: 10.1016/j.tins.2025.08.006

    The study of foraging is central to a renewed interest in naturalistic behavior in neuroscience. Applying a foraging framework grounded in behavioral ecology has enabled probing of the mechanisms underlying cognitive processes such as decision-making within a more ecological context. Yet, foraging also involves myriad other aspects, including navigation of complex environments, sensory processing, and social interactions. Here, we first provide a brief overview of the neuroscience of foraging decisions, and then combine insights from behavioral ecology and neuroscience to review the role of these additional dimensions of foraging. We conclude by highlighting four opportunities for the continued development of foraging as an ethological framework for neuroscience: integrating normative and implementation-level models, developing new tools, enabling cross-species comparisons, and fostering interdisciplinary collaboration.

    View Publication Page
    10/06/25 | Illuminating Renal Proximal Tubule Architecture through High-Resolution Volume EM and Machine Learning Analysis.
    Pandya RD, Lackner EM, Xu CS, Zugates C, Burdyniuk M, Reyna-Neyra A, Pandya VD, Li W, Pang S, Weisz OA, Caplan MJ
    J Am Soc Nephrol. 2025 Oct 06:. doi: 10.1681/ASN.0000000884

    BACKGROUND: Kidney epithelial cells perform complex vectorial fluid and solute transport at high volumes and rapid rates. Their structural organization both reflects and enables these sophisticated physiological functions. However, our understanding of the nanoscale spatial organization and intracellular ultrastructure that underlies these crucial cellular functions remains limited.

    METHODS: To address this knowledge gap, we generated and reconstructed an extensive electron microscopic dataset of renal proximal tubule (PT) epithelial cells at isotropic resolutions down to 4nm. We employed artificial intelligence-based segmentation tools to identify, trace, and measure all major subcellular components. We complemented this analysis with immunofluorescence microscopy to connect subcellular architecture to biochemical function.

    RESULTS: Our ultrastructural analysis revealed complex organization of membrane-bound compartments in proximal tubule cells. The apical endocytic system featured deep invaginations connected to an anastomosing meshwork of dense apical tubules, rather than discrete structures. The endoplasmic reticulum displayed distinct structural domains: fenestrated sheets in the basolateral region and smaller, disconnected clusters in the subapical region. We identified, quantified, and visualized membrane contact sites between endoplasmic reticulum, plasma membrane, mitochondria, and apical endocytic compartments. Immunofluorescence microscopy demonstrated distinct localization patterns for endoplasmic reticulum resident proteins at mitochondrial and plasma membrane interfaces.

    CONCLUSIONS: This study provides novel insights into proximal tubule cell organization, revealing specialized compartmentalization and unexpected connections between membrane-bound organelles. We identified previously uncharacterized structures, including mitochondria-plasma membrane bridges and an interconnected endocytic meshwork, suggesting mechanisms for efficient energy distribution, cargo processing and structural support. Morphological differences between 4nm and 8nm datasets indicate subsegment-specific specializations within the proximal tubule. This comprehensive open-source dataset provides a foundation for understanding how subcellular architecture supports specialized epithelial function in health and disease.

    View Publication Page
    10/01/25 | A multi-muscular, redundant strategy for free-flight roll stability
    Ludlow BK, Dhawan S, Whitehead SC, Teoh HK, Ehrhardt E, Cowan N, Dickerson BH, Cohen I
    bioRxiv. 2025 Oct 01:. doi: 10.1101/2025.09.29.679272

    Whether recovering after a gust of wind, or rapidly saccading away from an oncoming predator, fruit flies show remarkable aerial dexterity about their body roll axis. Here, we investigated the detailed wing kinematic changes during free-flight roll motion and probed the neuromuscular basis for such changes. Consistent with previous work, we observed that flies manipulated the stroke amplitude difference between their wings to control their roll angle. Here, we show that flies are capable of achieving such changes by altering the stroke amplitude of either or both of their wings. Further we found that during corrections flies can also take advantage of an aerodynamically significant change in the angle of attack of their uppermost wing. Curiously, these corrective wing changes cannot be eliminated when motor neurons hypothesized to be used during roll maneuvers (i1, i2, b1, b2, and b3) are individually inhibited. However, free-flight optogenetic manipulations and quasi-steady aerodynamic calculations show that each of these motor neurons individually can effect kinematic changes consistent with a roll correction. Combining this evidence with an analysis of haltere inputs found in the BANC connectome, we propose that the observed robustness could be the result of two sets of muscular redundancies that receive shared inputs from haltere sensory afferents: one set, containing b1 and b2, is able to increase the stroke amplitude of the lower wing; while the other set, containing i1, i2, and b3, is able to decrease the stroke amplitude and wing pitch angle of the upper wing. Because of the redundancy in the input sensory information and output wing motion in the muscles in each cluster, the fly is able to perform roll stability maneuvers even when one of the constituent motor neurons is inhibited. This framework proposes new ways fast aerial maneuverability can be implemented when dealing with the fly’s most unstable rotational degree of freedom.

    View Publication Page
    09/26/25 | A single residue in the yellow fever virus envelope protein modulates virion architecture and antigenicity.
    Bibby S, Jung J, Low YS, Amarilla AA, Newton ND, Scott CA, Balk J, Ting YT, Freney ME, Liang B, Grant T, Coulibaly F, Young P, Hall RA, Hobson-Peters J, Modhiran N, Watterson D
    Nat Commun. 2025 Sep 26;16(1):8449. doi: 10.1038/s41467-025-63038-5

    Yellow fever virus (YFV) is a re-emerging flavivirus that causes severe hepatic disease and mortality in humans. Despite being researched for over a century, the structure of YFV has remained elusive. Here we use a chimeric virus platform to resolve the first high resolution cryo-EM structures of YFV. Stark differences in particle morphology and homogeneity are observed between vaccine and virulent strains of YFV, and these are found to have significant implications on antibody recognition and neutralisation. We identify a single residue (R380) in the YFV envelope protein that stabilises the virion surface, and leads to reduced exposure of the cross-reactive fusion loop epitope. The differences in virion morphology between YFV strains also contribute to the reduced sensitivity of the virulent YFV virions to vaccine-induced antibodies. These findings have significant implications for YFV biology, vaccinology and structure-based flavivirus antigen design.

    View Publication Page
    09/26/25 | Alternating Angle Milling Suppresses Streaking Artifacts in FIB-SEM Imaging
    Shtengel G, Qiu W, Aaron J, Crowe AS, Polilov AA, Karkali K, Bleck CK, Hess HH
    bioRxiv. 2025 Sep 26:. doi: 10.1101/2025.09.25.678572

    Focused ion beam scanning electron microscopy (FIB-SEM) (1–3) has been used in life sciences to produce large volumetric datasets with high resolution information on ultrastructure of biological organisms. 3D image acquisition is accomplished by serial removal of thin layers of material using focused ion beam (FIB) milling followed by scanning electron microscopy (SEM) imaging.One of the challenges in the standard FIB-SEM imaging protocol is that FIB milling results in characteristic artifacts, known as “streaks” or “curtains”. These streaks are caused by non-uniform material removal forming long straight trenches parallel to the FIB milling direction. These artifacts get worse along the milling direction and ultimately limit size of the SEM field of view.Various methods have been proposed to mitigate the streaks in acquired images. While these techniques often provide noticeable visual improvement, the underlying problem remains. The structural information in the “streaked” areas is lost due to non-uniform material removal during milling and cannot be fully recovered.We propose a simple modification allowing for a significant reduction of milling non-uniformities of streaks. We demonstrate the effectiveness of this approach on various samples.

    View Publication Page
    09/28/25 | Combinatorial protein barcodes enable self-correcting neuron tracing with nanoscale molecular context
    Park SY, Sheridan A, An B, Jarvis E, Lyudchik J, Patton W, Axup JY, Chan SW, Damstra HG, Leible D, Leung KS, Magno CA, Meeran A, Michalska JM, Rieger F, Wang C, Wu M, Church GM, Funke J, Huffman T, Leeper KG, Truckenbrodt S, Winnubst J, Kornfeld JM, Boyden ES, Rodriques SG, Payne AC
    bioRxiv. 2025 Sep 28:. doi: 10.1101/2025.09.26.678648

    Mapping nanoscale neuronal morphology with molecular annotations is critical for understanding healthy and dysfunctional brain circuits. Current methods are constrained by image segmentation errors and by sample defects (e.g., signal gaps, section loss). Genetic strategies promise to overcome these challenges by using easily distinguishable cell identity labels. However, multicolor approaches are spectrally limited in diversity, whereas nucleic acid barcoding lacks a cell-filling morphology signal for segmentation. Here, we introduce PRISM (Protein-barcode Reconstruction via Iterative Staining with Molecular annotations), a platform that integrates combinatorial delivery of antigenically distinct, cell-filling proteins with tissue expansion, multi-cycle imaging, barcode-augmented reconstruction, and molecular annotation. Protein barcodes increase label diversity by >750-fold over multicolor labeling and enable morphology reconstruction with intrinsic error correction. We acquired a \~10 million μm3 volume of mouse hippocampal area CA2/3, multiplexed across 23 barcode antigen and synaptic marker channels. By combining barcodes with shape information we achieve an 8x increase in automatic tracing accuracy of genetically labelled neurons. We demonstrate PRISM supports automatic proofreading across micron-scale spatial gaps and reconnects neurites across discontinuities spanning hundreds of microns. Using PRISM’s molecular annotation capability, we map the distribution of synapses onto traced neural morphology, characterizing challenging synaptic structures such as thorny excrescences (TEs), and discovering a size correlation among spatially proximal TEs on the same dendrite. PRISM thus supports self-correcting neuron reconstruction with molecular context.

    View Publication Page
    10/02/25 | COOKIE-Pro: covalent inhibitor binding kinetics profiling on the proteome scale.
    Lin H, Yang B, Ding L, Yang Y, Holt MV, Jung SY, Zhang B, Wang MC, Wang J
    Nat Commun. 2025 Sep 30;16(1):8373. doi: 10.1038/s41467-025-63491-2

    Covalent inhibitors are an emerging class of therapeutics, but methods to comprehensively profile their binding kinetics and selectivity across the proteome have been limited. Here we introduce COOKIE-Pro (COvalent Occupancy KInetic Enrichment via Proteomics), an unbiased method for quantifying irreversible covalent inhibitor binding kinetics on a proteome-wide scale. COOKIE-Pro uses a two-step incubation process with mass spectrometry-based proteomics to determine k and K values for covalent inhibitors against both on-target and off-target proteins. We validated COOKIE-Pro using BTK inhibitors spebrutinib and ibrutinib, accurately reproducing known kinetic parameters and identifying both expected and unreported off-targets. The method revealed that spebrutinib has over 10-fold higher potency for TEC kinase compared to its intended target BTK. To demonstrate the method's utility for high-throughput screening, we applied a streamlined two-point strategy to a library of 16 covalent fragments. This approach successfully generated thousands of kinetic profiles, enabling the quantitative decoupling of intrinsic chemical reactivity from binding affinity at scale and validating the method's broad applicability. By providing a comprehensive view of covalent inhibitor binding across the proteome, COOKIE-Pro represents a powerful tool for optimizing the potency and selectivity of covalent drugs during preclinical development.

     

    bioRxiv preprint: https://doi.org/10.1101/2025.06.19.660637

    View Publication Page