Filter
Associated Lab
- Ahrens Lab (39) Apply Ahrens Lab filter
- Aso Lab (37) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (97) Apply Betzig Lab filter
- Beyene Lab (3) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (42) Apply Branson Lab filter
- Card Lab (30) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (10) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (7) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (33) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (11) Apply Espinosa Medina Lab filter
- Feliciano Lab (6) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (13) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (31) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (46) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (16) Apply Hermundstad Lab filter
- Hess Lab (63) Apply Hess Lab filter
- Jayaraman Lab (38) Apply Jayaraman Lab filter
- Ji Lab (32) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (59) Apply Keller Lab filter
- Lavis Lab (115) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (1) Apply Li Lab filter
- Lippincott-Schwartz Lab (79) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (49) Apply Liu (Zhe) Lab filter
- Looger Lab (136) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (3) Apply O'Shea Lab filter
- Pachitariu Lab (22) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (39) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (28) Apply Romani Lab filter
- Rubin Lab (98) Apply Rubin Lab filter
- Saalfeld Lab (39) Apply Saalfeld Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (41) Apply Schreiter Lab filter
- Shroff Lab (12) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (36) Apply Singer Lab filter
- Spruston Lab (55) Apply Spruston Lab filter
- Stern Lab (64) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (18) Apply Stringer Lab filter
- Svoboda Lab (130) Apply Svoboda Lab filter
- Tebo Lab (4) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (12) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (32) Apply Turaga Lab filter
- Turner Lab (23) Apply Turner Lab filter
- Vale Lab (3) Apply Vale Lab filter
- Wang (Meng) Lab (2) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (1) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- Fly Descending Interneuron (9) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (48) Apply FlyEM filter
- FlyLight (45) Apply FlyLight filter
- GENIE (37) Apply GENIE filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (15) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (17) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Publication Date
- 2023 (168) Apply 2023 filter
- 2022 (171) Apply 2022 filter
- 2021 (174) Apply 2021 filter
- 2020 (178) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
Type of Publication
- Remove Janelia filter Janelia
2363 Publications
Showing 51-60 of 2363 resultsOrientation columns exist in the primary visual cortex (V1) of cat and primates but not mouse. Intriguingly, some recent studies reported the presence of orientation and direction columns in the mouse superficial superior colliculus (sSC), while others reported a lack of columnar organization therein. Using in vivo calcium imaging of sSC in the awake mouse brain, we found that the presence of columns is highly stimulus dependent. Specifically, we observed orientation and direction columns formed by sSC neurons retinotopically mapped to the edge of grating stimuli. For both excitatory and inhibitory neurons in sSC, orientation selectivity can be induced by the edge with their preferred orientation perpendicular to the edge orientation. Furthermore, we found that this edge-induced orientation selectivity is associated with saliency encoding. These findings indicate that the tuning properties of sSC neurons are not fixed by circuit architecture but rather dependent on the spatiotemporal properties of the stimulus.
Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task understanding and behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent structure of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.
Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. New advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, which are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identify using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 86% average recovery rate.
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
One-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed "secretome" mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.
A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA' and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.
Our ability to remember the past is essential for guiding our future behavior. Psychological and neurobiological features of declarative memories are known to transform over time in a process known as systems consolidation. While many theories have sought to explain the time-varying role of hippocampal and neocortical brain areas, the computational principles that govern these transformations remain unclear. Here we propose a theory of systems consolidation in which hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive behavior. We use mathematical analysis of neural network models to characterize fundamental performance tradeoffs in systems consolidation, revealing that memory components should be organized according to their predictability. The theory shows that multiple interacting memory systems can outperform just one, normatively unifying diverse experimental observations and making novel experimental predictions. Our results suggest that the psychological taxonomy and neurobiological organization of declarative memories reflect a system optimized for behaving well in an uncertain future.
Animal brains are complex organs composed of thousands of interconnected neurons. Characterizing the network properties of these brains is a requisite step towards understanding mechanisms of computation and information flow. With the completion of the Flywire project, we now have access to the connectome of a complete adult Drosophila brain, containing 130,000 neurons and millions of connections. Here, we present a statistical summary and data products of the Flywire connectome, delving into its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We uncovered a population of highly connected neurons known as the “rich club” and identified subsets of neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions. The freely available data and neuron populations presented here will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers setting up experiments while listening to spikes in real time and observing a pattern of consistent firing when certain stimuli or behaviors happened. With the advent of large-scale recordings, such close observation of data has become harder because high-dimensional spaces are impenetrable to our pattern-finding intuitions. To help ourselves find patterns in neural data, our lab has been openly developing a visualization framework known as “Rastermap” over the past five years. Rastermap takes advantage of a new global optimization algorithm for sorting neural responses along a one-dimensional manifold. Displayed as a raster plot, the sorted neurons show a variety of activity patterns, which can be more easily identified and interpreted. We first benchmark Rastermap on realistic simulations with multiplexed cognitive variables. Then we demonstrate it on recordings of tens of thousands of neurons from mouse visual and sensorimotor cortex during spontaneous, stimulus-evoked and task-evoked epochs, as well as on whole-brain zebrafish recordings, widefield calcium imaging data, population recordings from rat hippocampus and artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.