Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2673 Publications

Showing 81-90 of 2673 results
Your Criteria:
    02/06/25 | Neuropixels Opto: Combining high-resolution electrophysiology and optogenetics
    Lakunina A, Socha KZ, Ladd A, Bowen AJ, Chen S, Colonell J, Doshi A, Karsh B, Krumin M, Kulik P, Li A, Neutens P, O’Callaghan J, Olsen M, Putzeys J, Tilmans HA, Ye Z, Welkenhuysen M, Häusser M, Koch C, Ting JT, Neuropixels Opto Consortium , Dutta B, Harris TD, Steinmetz NA, Svoboda K, Siegle JH, Carandini M
    bioRxiv. 2025 Feb 06:. doi: 10.1101/2025.02.04.636286

    High-resolution extracellular electrophysiology is the gold standard for recording spikes from distributed neural populations, and is especially powerful when combined with optogenetics for manipulation of specific cell types with high temporal resolution. We integrated these approaches into prototype Neuropixels Opto probes, which combine electronic and photonic circuits. These devices pack 960 electrical recording sites and two sets of 14 light emitters onto a 1 cm shank, allowing spatially addressable optogenetic stimulation with blue and red light. In mouse cortex, Neuropixels Opto probes delivered high-quality recordings together with spatially addressable optogenetics, differentially activating or silencing neurons at distinct cortical depths. In mouse striatum and other deep structures, Neuropixels Opto probes delivered efficient optotagging, facilitating the identification of two cell types in parallel. Neuropixels Opto probes represent an unprecedented tool for recording, identifying, and manipulating neuronal populations.

    View Publication Page
    02/04/25 | Dendritic excitations govern back-propagation via a spike-rate accelerometer
    Park P, Wong-Campos D, Itkis DG, Lee BH, Qi Y, Davis H, Antin B, Pasarkar A, Grimm JB, Plutkis SE, Holland KL, Paninski L, Lavis LD, Cohen AE
    Nature Communications. 2025 Feb 04;16(1):. doi: 10.1038/s41467-025-55819-9

    Dendrites on neurons support nonlinear electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and analytical tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent spike back-propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization created a transient window for dSpike propagation, opened by A-type KV channel inactivation, and closed by slow NaV inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.

    View Publication Page
    01/31/25 | Targets of Circadian Clock Neurons Influence Core Clock Parameters
    Scholz-Carson E, Iyer AR, Ewer J, Fernandez MP
    bioRxiv. 2025 Jan 31:. doi: https://doi.org/10.1101/2025.01.30.635801v1

    Neuronal connectivity in the circadian clock network is essential for robust endogenous timekeeping. In the Drosophila circadian clock network, the four pairs of small ventral lateral neurons (sLNvs) serve as main pacemakers. Peptidergic communication via sLNv, which release the key output neuropeptide, Pigment Dispersing Factor (PDF), has been well characterized. In the absence of PDF, flies become largely arrhythmic, similar to the phenotype associated with the loss of the mammalian circadian peptide, VIP. In contrast, little is known about the role of the synaptic connections that sLNvs form with downstream neurons. Connectomic analyses revealed that despite their role as key pacemaker neurons within the clock network, the sLNvs form few connections with other clock neurons. However, they form strong synaptic connections with a small group of previously uncharacterized neurons, SLP316, which in turn synapse onto dorsal clock neurons. Here, we show that silencing SLP316 neurons via tetanus toxin (TNT) expression shortens the free-running period, whereas hyper-exciting them by expressing the constitutively open Na[+] channel, NaChBac, results in period lengthening. Under light-dark cycles, silencing SLP316 neurons also causes lower daytime activity and higher daytime sleep. Our results revealed that the main postsynaptic partners of the Drosophila pacemaker neurons are a non-clock neuronal cell type that regulates the timing of sleep and activity.

    View Publication Page
    01/29/25 | Quantitative Profiling pH Heterogeneity of Acidic Endolysosomal Compartments using Fluorescence Lifetime Imaging Microscopy.
    Deng D, Guan Y, Mutlu AS, Wang B, Gao SM, Zheng H, Wang MC
    Mol Biol Cell. 2025 Jan 29:mbcE23060220. doi: 10.1091/mbc.E23-06-0220

    The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism . This FLIM-based method exhibits high sensitivity in resolving subtle pH differences, thereby revealing heterogeneity within a cell and across cell types. This method enables rapid measurement of pH changes in the acidic endolysosomal system in response to various environmental stimuli. Furthermore, the fast FLIM measurement of pH-sensitive dyes circumvents the need for transgenic reporters and mitigates potential confounding factors associated with varying dye concentrations or excitation light intensity. This FLIM approach offers absolute pH quantification and highlights the significance of pH heterogeneity and dynamics, offering a valuable tool for investigating lysosomal functions and their regulation in various physiological and pathological contexts.

    View Publication Page
    01/21/25 | Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation
    Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM
    elife. 2025 Jan 21:. doi: 10.7554/elife.104764.2

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    View Publication Page
    01/20/25 | Conjoint specification of action by neocortex and striatum
    Junchol Park , Peter Polidoro , Catia Fortunato , Jon Arnold , Brett Mensh , Juan A. Gallego , Joshua T. Dudman
    Neuron. 2025 Jan 20:. doi: https://doi.org/10.1016/j.neuron.2024.12.024

    Summary The interplay between two major forebrain structures—cortex and subcortical striatum—is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.

    View Publication Page
    01/16/25 | Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques.
    Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJ, Roelfsema P, Badura A, De Zeeuw CI
    Elife. 2025 Jan 16;13:. doi: 10.7554/eLife.99696

    The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.

    View Publication Page
    01/16/25 | Molecular Determinants of Optical Modulation in ssDNA–Carbon Nanotube Biosensors
    Krasley AT, Chakraborty S, Vuković L, Beyene AG
    ACS Nano. 01/2025:. doi: 10.1021/acsnano.4c13814

    Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA–SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we combine experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA–SWCNT catecholamine sensors, the optical response correlates positively with the electron density on the aryl motif, even among ligands with similar ligand binding affinities. Importantly, despite the strong correlations with electrochemical properties, we find that catechol oxidation itself is not necessary to drive the sensor optical response. We discuss how these findings could serve as a framework for tuning the performance of existing sensors and guiding the development of new biosensors of this class.

    View Publication Page
    01/06/25 | A split-GAL4 driver line resource for Drosophila neuron types
    Meissner GW, Vannan A, Jeter J, Close K, Depasquale GM, Dorman Z, Forster K, Beringer JA, Gibney TV, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer N, Lazarus R, Lee K, Li H, Liaw H, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao J, Laverty T, Mercer M, Perez B, Pitts S, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HS, Dolan M, Ehrhardt E, Feng K, El Galfi B, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, minegishi r, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM
    01/23/23 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
    Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
    Cell. 01/2025;188(2):484-500.e22. doi: 10.1016/j.cell.2024.11.029

    Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

    View Publication Page