Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1416 Publications

Showing 1401-1410 of 1416 results
Your Criteria:
    03/01/84 | Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA.
    Chang DD, Clayton DA
    Cell. 1984 Mar;36:635-43. doi: 10.1101/gad.1352105

    The major site of in vivo transcriptional initiation for both heavy and light strands of human mitochondrial DNA is the displacement-loop region. Transcripts synthesized in vitro by human mitochondrial RNA polymerase were mapped to the nucleotide level and have identical 5’ end map positions to those reported for in vivo primary transcripts. An ordered series of deletion clones, whose template sequences were truncated at either the 5’ or 3’ end, was used to identify the precise mitochondrial DNA sequence required for initiation of transcription. The data provide a definitive assignment of the promoter for heavy-strand transcription occurring within -16 to +7 of the transcriptional start site 16 nucleotides upstream of the 5’ end of the gene for tRNAPhe and of the promoter for light-strand transcription occurring within -28 to +16 of the transcriptional start site at the 5’ end of "7S RNA." Within each control sequence is a candidate promoter whose consensus sequence is 5’-CANACC(G)CC(A)AAAGAPyA-3’ and in both cases transcriptional initiation occurs within six to eight nucleotides of the 3’ end of this sequence. The transcriptional start site is an integral part of each promoter and each promoter can function in the absence of the other.

    View Publication Page
    Baker Lab
    12/01/83 | Sex determination and dosage compensation in melanogaster.
    Baker B, Belote J
    Annual Review of Genetics. 1983 Dec;17:345-93
    08/01/83 | The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene.
    Spradling AC, Rubin GM
    Cell. 1983 Aug;34(1):47-57. doi: 10.1186/gb-2007-8-7-r145

    Thirty-six isogenic D. melanogaster strains that differed only in the chromosomal location of a 7.2 or an 8.1 kb DNA segment containing the (autosomal) rosy gene were constructed by P-element-mediated gene transfer. Since the flies were homozygous for a rosy- allele, rosy gene function in these indicated the influence of flanking sequences on gene expression. The tissue distribution of XDH activity in all the strains was normal. Each line exhibited a characteristic level of adult XDH-specific activity. The majority of these values were close to wild-type levels; however, the total variation in specific activity among the lines was nearly fivefold. Thus position effects influence expression of the rosy gene quantitatively but do not detectably alter tissue specificity. X-linked rosy insertions were expressed on average 1.6 times more activity in males than in females. Hence the gene acquires at least partial dosage compensation upon insertion into the X chromosome.

    View Publication Page
    10/22/82 | Genetic transformation of Drosophila with transposable element vectors.
    Rubin GM, Spradling AC
    Science. 1982 Oct 22;218(4570):348-53. doi: 10.1186/gb-2007-8-7-r145

    Exogenous DNA sequences were introduced into the Drosophila germ line. A rosy transposon (ry1), constructed by inserting a chromosomal DNA fragment containing the wild-type rosy gene into a P transposable element, transformed germ line cells in 20 to 50 percent of the injected rosy mutant embryos. Transformants contained one or two copies of chromosomally integrated, intact ry1 that were stably inherited in subsequent generations. These transformed flies had wild-type eye color indicating that the visible genetic defect in the host strain could be fully and permanently corrected by the transferred gene. To demonstrate the generality of this approach, a DNA segment that does not confer a recognizable phenotype on recipients was also transferred into germ line chromosomes.

    View Publication Page
    07/01/82 | The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family.
    Bingham PM, Kidwell MG, Rubin GM
    Cell. 1982 Jul;29(3):995-1004. doi: 10.1186/gb-2007-8-7-r145

    We have shown previously that four of five white mutant alleles arising in P-M dysgenic hybrids result from the insertion of strongly homologous DNA sequence elements. We have named these P elements. We report that P elements are present in 30-50 copies per haploid genome in all P strains examined and apparently are missing entirely from all M strains examined, with one exception. Furthermore, members of the P family apparently transpose frequently in P-M dysgenic hybrids; chromosomes descendant from P-M dysgenic hybrids frequently show newly acquired P elements. Finally, the strain-specific breakpoint hotspots for the rearrangement of the pi 2 P X chromosome occurring in P-M dysgenic hybrids are apparently sites of residence of P elements. These observations strongly support the P factor hypothesis for the mechanistic basis of P-M hybrid dysgenesis.

    View Publication Page
    Baker Lab
    03/01/82 | Sex determination in Drosophila melanogaster: analysis of transformer-2 , a sex-transforming locus.
    Baker B, Belote J
    Proceedings of the National Academy of Sciences of the United States of America. 1982 Mar;79(5):1568-72

    The transformer-2 (tra-2) locus is one of a set of regulatory loci that control sex determination in Drosophila melanogaster. Temperature-shift experiments with temperature-sensitive tra-2 mutants demonstrate that within single cell lineages tra-2+ function is required at several times, and probably continuously, during development for the occurrence of a series of determinative decisions necessary for female sexual differentiation. Analysis of the effects of tra-2 in the genital disc demonstrates that the tra-2+ function is necessary in females both to prevent male sexual differentiation and to permit female differentiation. These and other results support the model that the tra-2+ and tra+ loci act to control the expression of the bifunctional doublesex (dsx) locus.

    View Publication Page
    10/01/81 | Sequence and gene organization of mouse mitochondrial DNA.
    Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA
    Cell. 1981 Oct;26:167-80. doi: 10.1101/gad.1352105

    The complete sequence of the 16,295 bp mouse L cell mitochondrial DNA genome has been determined. Genes for the 12S and 16S ribosomal RNAs; 22 tRNAs; cytochrome c oxidase subunits I, II and III; ATPase subunit 6; cytochrome b; and eight unidentified proteins have been located. The genome displays exceptional economy of organization, with tRNA genes interspersed between rRNA and protein-coding genes with zero or few noncoding nucleotides between coding sequences. Only two significant portions of the genome, the 879 nucleotide displacement-loop region containing the origin of heavy-strand replication and the 32 nucleotide origin of light-strand replication, do not encode a functional RNA species. All of the remaining nucleotide sequence serves as a defined coding function, with the exception of 32 nucleotides, of which 18 occur at the 5’ ends of open reading frames. Mouse mitochondrial DNA is unique in that the translational start codon is AUN, with any of the four nucleotides in the third position, whereas the only translational stop codon is the orthodox UAA. The mouse mitochondrial DNA genome is highly homologous in overall sequence and in gene organization to human mitochondrial DNA, with the descending order of conserved regions being tRNA genes; origin of light-strand replication; rRNA genes; known protein-coding genes; unidentified protein-coding genes; displacement-loop region.

    View Publication Page
    Riddiford Lab
    09/10/81 | Pheromone binding and inactivation by moth antennae.
    Vogt RG, Riddiford LM
    Nature. 1981 Sep 10-16;293(5828):161-3

    The antennae of male silk moths are extremely sensitive to the female sex pheromone such that a male moth can find a female up to 4.5 km away. This remarkable sensitivity is due to both the morphological and biochemical design of these antennae. Along the branches of the plumose antennae are the sensilla trichodea, each consisting of a hollow cuticular hair containing two unbranched dendrites bathed in a fluid, the receptor lymph ,3. The dendrites and receptor lymph are isolated from the haemolymph by a barrier of epidermal cells which secreted the cuticular hair. Pheromone molecules are thought to diffuse down 100 A-wide pore tubules through the cuticular wall and across the receptor lymph space to receptors located in the dendritic membrane. To prevent the accumulation of residual stimulant and hence sensory adaptation, the pheromone molecules are subsequently inactivated in an apparent two-step process of rapid ’early inactivation’ followed by much slower enzymatic degradation. The biochemistry involved in this sequence of events is largely unknown. We report here the identification of three proteins which interact with the pheromone of the wild silk moth Antheraea polyphemus: a pheromone-binding protein and a pheromone-degrading esterase, both uniquely located in the pheromone-sensitive sensilla; and a second esterase common to all cuticular tissues except the sensilla.

    View Publication Page
    09/01/81 | Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method.
    Bingham PM, Levis R, Rubin GM
    Cell. 1981 Sep;25(3):693-704. doi: 10.1186/gb-2007-8-7-r145

    We describe the isolation of a cloned DNA segment carrying unique sequences from the white locus of Drosophila melanogaster. Sequences within the cloned segment are shown to hybridize in situ to the white locus region on the polytene chromosomes of both wild-type strains and strains carrying chromosomal rearrangements whose breakpoints bracket the white locus. We further show that two small deficiency mutations, deleting white locus genetic elements but not those of complementation groups contiguous to white, delete the genomic sequences corresponding to a portion of the cloned segment. The strategy we have employed to isolate this cloned segment exploits the existence of an allele at the white locus containing a copy of a previously cloned transposable, reiterated DNA sequence element. We describe a simple, rapid method for retrieving cloned segments carrying a copy of the transposable element together with contiguous sequences corresponding to this allele. The strategy described is potentially general and we discuss its application to the cloning of the DNA sequences of other genes in Drosophila, including those identified only by genetic analysis and for which no RNA product is known.

    View Publication Page
    Baker Lab
    02/01/80 | On the action of major loci affecting sex determination in Drosophila melanogaster.
    Baker B, Ridge K
    Genetics. 1980 Feb;94(2):383-423

    Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra(+) and tra-2(+) cease being needed shortly before the termination of cell division in the abdomen, whereas dsx(+) is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra(+) and tra-2(+) have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx(+) is required in the foreleg at least until pupariation.--A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.-All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.-The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.

    View Publication Page