Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1358 Publications

Showing 51-60 of 1358 results
Your Criteria:
    06/21/19 | High precision coding in visual cortex
    Stringer C, Michaelos M, Pachitariu M
    BioRxiv. 06/2019:679324. doi:

    Single neurons in visual cortex provide unreliable measurements of visual features due to their high trial-to-trial variability. It is not known if this “noise” extends its effects over large neural populations to impair the global encoding of sensory stimuli. We recorded simultaneously from ∼20,000 neurons in mouse visual cortex and found that the neural population had discrimination thresholds of 0.3° in an orientation decoding task. These thresholds are ∼100 times smaller than those reported behaviorally in mice. The discrepancy between neural and behavioral discrimination could not be explained by the types of stimuli we used, by behavioral states or by the sequential nature of trial-by-trial perceptual learning tasks. These results imply that the limits of sensory perception in mice are not set by neural noise in sensory cortex, but by the limitations of downstream decoders.

    View Publication Page
    06/21/19 | Functional divergence of Plexin B structural motifs in distinct steps of olfactory circuit assembly.
    Guajardo R, Luginbuhl DJ, Han S, Luo L, Li J
    Elife. 06/2019;8:. doi: 10.7554/eLife.48594

    Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.

    View Publication Page
    05/29/19 | Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons
    Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, Koay SA, Thiberge SY, Daw ND, Tank DW, Witten IB
    Nature. 05/2019;570(7762):509 - 513. doi: 10.1038/s41586-019-1261-9

    There is increased appreciation that dopamine neurons in the midbrain respond not only to reward1 and reward-predicting cues1,2, but also to other variables such as the distance to reward3, movements4,5,6,7,8,9 and behavioural choices10,11. An important question is how the responses to these diverse variables are organized across the population of dopamine neurons. Whether individual dopamine neurons multiplex several variables, or whether there are subsets of neurons that are specialized in encoding specific behavioural variables remains unclear. This fundamental question has been difficult to resolve because recordings from large populations of individual dopamine neurons have not been performed in a behavioural task with sufficient complexity to examine these diverse variables simultaneously. Here, to address this gap, we used two-photon calcium imaging through an implanted lens to record the activity of more than 300 dopamine neurons from the ventral tegmental area of the mouse midbrain during a complex decision-making task. As mice navigated in a virtual-reality environment, dopamine neurons encoded an array of sensory, motor and cognitive variables. These responses were functionally clustered, such that subpopulations of neurons transmitted information about a subset of behavioural variables, in addition to encoding reward. These functional clusters were spatially organized, with neighbouring neurons more likely to be part of the same cluster. Together with the topography between dopamine neurons and their projections, this specialization and anatomical organization may aid downstream circuits in correctly interpreting the wide range of signals transmitted by dopamine neurons.

    View Publication Page
    03/25/19 | The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins
    Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, Yu J, Woods EC, Kramer JR, Westerlind U, Dorigo O, Bertozzi CR
    Proceedings of the National Academy of Sciences. Sep-04-2019;116(15):7278 - 7287. doi: 10.1073/pnas.1813020116

    Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE's unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.


    View Publication Page

    Studies of perceptual decision-making have often assumed that the main role of sensory cortices is to provide sensory input to downstream processes that accumulate and drive behavioral decisions. We performed a systematic comparison of neural activity in primary visual (V1) to secondary visual and retrosplenial cortices, as mice performed a task where they should accumulate pulsatile visual cues through time to inform a navigational decision. Even in V1, only a small fraction of neurons had sensory-like responses to cues. Instead, in all areas neurons were sequentially active, and contained information ranging from sensory to cognitive, including cue timings, evidence, place/time, decision and reward outcome. Per-cue sensory responses were amplitude-modulated by various cognitive quantities, notably accumulated evidence. This inspired a multiplicative feedback-loop circuit hypothesis that proposes a more intricate role of sensory areas in the accumulation process, and furthermore explains a surprising observation that perceptual discrimination deviates from Weber-Fechner Law.Highlights / eTOC BlurbMice made navigational decisions based on accumulating pulsatile visual cuesThe bulk of neural activity in visual cortices was sequential and beyond-sensoryAccumulated pulse-counts modulated sensory (cue) responses, suggesting feedbackA feedback-loop neural circuit explains behavioral deviations from Weber’s LawHighlights / eTOC BlurbIn a task where navigation was informed by accumulated pulsatile visual evidence, neural activity in visual cortices predominantly coded for cognitive variables across multiple timescales, including outside of a visual processing context. Even sensory responses to visual pulses were amplitude-modulated by accumulated pulse counts and other variables, inspiring a multiplicative feedback-loop circuit hypothesis that in turn explained behavioral deviations from Weber-Fechner Law.

    View Publication Page
    02/01/19 | Neuronal activity and learning in local cortical networks are modulated by the action-perception state
    Ben Engelhard , Ran Darshan , Nofar Ozeri-Engelhard , Zvi Israel , Uri Werner-Reiss , David Hansel , Hagai Bergman , Eilon Vaadia
    bioRxiv. 2019 Feb 01:. doi: 10.1101/537613

    During sensorimotor learning, neuronal networks change to optimize the associations between action and perception. In this study, we examine how the brain harnesses neuronal patterns that correspond to the current action-perception state during learning. To this end, we recorded activity from motor cortex while monkeys either performed a familiar motor task (movement-state) or learned to control the firing rate of a target neuron using a brain-machine interface (BMI-state). Before learning, monkeys were placed in an observation-state, where no action was required. We found that neuronal patterns during the BMI-state were markedly different from the movement-state patterns. BMI-state patterns were initially similar to those in the observation-state and evolved to produce an increase in the firing rate of the target neuron. The overall activity of the non-target neurons remained similar after learning, suggesting that excitatory-inhibitory balance was maintained. Indeed, a novel neural-level reinforcement-learning network model operating in a chaotic regime of balanced excitation and inhibition predicts our results in detail. We conclude that during BMI learning, the brain can adapt patterns corresponding to the current action-perception state to gain rewards. Moreover, our results show that we can predict activity changes that occur during learning based on the pre-learning activity. This new finding may serve as a key step toward clinical brain-machine interface applications to modify impaired brain activity.

    View Publication Page
    01/17/19 | CaImAn an open source tool for scalable calcium imaging data analysis
    Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P, Khakh BS, Tank DW, Chklovskii DB, Pnevmatikakis EA
    eLife. 01/2019;8:. doi: 10.7554/eLife.38173

    Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons

    View Publication Page
    01/07/19 | Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx
    Möckl L, Pedram K, Roy AR, Krishnan V, Gustavsson A, Dorigo O, Bertozzi CR, Moerner W
    Developmental Cell. Jan-07-2019;50(1):57 - 72.e6. doi: 10.1016/j.devcel.2019.04.035

    The mammalian glycocalyx is a heavily glycosylated extramembrane compartment found on nearly every cell. Despite its relevance in both health and disease, studies of the glycocalyx remain hampered by a paucity of methods to spatially classify its components. We combine metabolic labeling, bioorthogonal chemistry, and super-resolution localization microscopy to image two constituents of cell-surface glycans, N-acetylgalactosamine (GalNAc) and sialic acid, with 10–20 nm precision in 2D and 3D. This approach enables two measurements: glycocalyx height and the distribution of individual sugars distal from the membrane. These measurements show that the glycocalyx exhibits nanoscale organization on both cell lines and primary human tumor cells. Additionally, we observe enhanced glycocalyx height in response to epithelial-to-mesenchymal transition and to oncogenic KRAS activation. In the latter case, we trace increased height to an effector gene, GALNT7. These data highlight the power of advanced imaging methods to provide molecular and functional insights into glycocalyx biology.

    View Publication Page
    01/06/19 | Physical Principles of Membrane Shape Regulation by the Glycocalyx
    Shurer CR, Kuo JC, Roberts LM, Gandhi JG, Colville MJ, Enoki TA, Pan H, Su J, Noble JM, Hollander MJ, O’Donnell JP, Yin R, Pedram K, Möckl L, Kourkoutis LF, Moerner W, Bertozzi CR, Feigenson GW, Reesink HL, Paszek MJ
    Cell. Jan-06-2019;177(7):1757 - 1770.e21. doi: 10.1016/j.cell.2019.04.017

    Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyxMucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.

    View Publication Page
    01/01/19 | Neural Correlates of Cognition in Primary Visual versus Downstream Posterior Cortices During Evidence Accumulation
    Koay SA, Tank D, Brody C
    APS March Meeting Abstracts. 01/2019:

    The ability of animals to accumulate sensory information across time is fundamental to decision-making. Using a mouse behavioral paradigm where navigational decisions are based on accumulating pulses of visual cues, I compared neural activity in primary visual (V1) to secondary visual and retrosplenial cortices. Even in V1, only a small fraction of neurons had sensory-like responses to cues. Instead, all areas were grossly similar in how neural populations contained a large variety of task-related information from sensory to cognitive, including cue timings, accumulated counts, place/time, decision and reward outcome. Across-trial influences were prevalent, possibly relevant to how animal behavior incorporates past contexts. Intriguingly, all these variables also modulated the amplitudes of sensory responses. While previous work often modeled the accumulation process as integration, the observed scaling of sensory responses by accumulated counts instead suggests a recursive process where sensory responses are gradually amplified. I show that such a multiplicative feedback-loop algorithm better explains psychophysical data than integration, particularly in how the performance transitions into following Weber-Fechner's Law only at high counts.



    View Publication Page