Filter
Associated Lab
- Aguilera Castrejon Lab (15) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (11) Apply Ahrens Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (12) Apply Betzig Lab filter
- Beyene Lab (5) Apply Beyene Lab filter
- Bock Lab (3) Apply Bock Lab filter
- Branson Lab (3) Apply Branson Lab filter
- Card Lab (6) Apply Card Lab filter
- Cardona Lab (19) Apply Cardona Lab filter
- Chklovskii Lab (3) Apply Chklovskii Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Darshan Lab (4) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (14) Apply Dickson Lab filter
- Druckmann Lab (4) Apply Druckmann Lab filter
- Dudman Lab (12) Apply Dudman Lab filter
- Egnor Lab (7) Apply Egnor Lab filter
- Espinosa Medina Lab (4) Apply Espinosa Medina Lab filter
- Fetter Lab (10) Apply Fetter Lab filter
- Fitzgerald Lab (13) Apply Fitzgerald Lab filter
- Gonen Lab (32) Apply Gonen Lab filter
- Grigorieff Lab (28) Apply Grigorieff Lab filter
- Harris Lab (10) Apply Harris Lab filter
- Heberlein Lab (81) Apply Heberlein Lab filter
- Hermundstad Lab (4) Apply Hermundstad Lab filter
- Hess Lab (3) Apply Hess Lab filter
- Jayaraman Lab (4) Apply Jayaraman Lab filter
- Johnson Lab (5) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keleman Lab (5) Apply Keleman Lab filter
- Keller Lab (15) Apply Keller Lab filter
- Koay Lab (16) Apply Koay Lab filter
- Lavis Lab (12) Apply Lavis Lab filter
- Lee (Albert) Lab (5) Apply Lee (Albert) Lab filter
- Leonardo Lab (4) Apply Leonardo Lab filter
- Li Lab (24) Apply Li Lab filter
- Lippincott-Schwartz Lab (72) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (5) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Magee Lab (18) Apply Magee Lab filter
- Menon Lab (6) Apply Menon Lab filter
- Murphy Lab (7) Apply Murphy Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Otopalik Lab (12) Apply Otopalik Lab filter
- Pachitariu Lab (12) Apply Pachitariu Lab filter
- Pastalkova Lab (13) Apply Pastalkova Lab filter
- Pavlopoulos Lab (12) Apply Pavlopoulos Lab filter
- Pedram Lab (11) Apply Pedram Lab filter
- Reiser Lab (6) Apply Reiser Lab filter
- Riddiford Lab (24) Apply Riddiford Lab filter
- Romani Lab (12) Apply Romani Lab filter
- Rubin Lab (38) Apply Rubin Lab filter
- Saalfeld Lab (17) Apply Saalfeld Lab filter
- Satou Lab (15) Apply Satou Lab filter
- Schreiter Lab (17) Apply Schreiter Lab filter
- Sgro Lab (20) Apply Sgro Lab filter
- Simpson Lab (5) Apply Simpson Lab filter
- Singer Lab (43) Apply Singer Lab filter
- Spruston Lab (36) Apply Spruston Lab filter
- Stern Lab (83) Apply Stern Lab filter
- Sternson Lab (7) Apply Sternson Lab filter
- Stringer Lab (3) Apply Stringer Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Tebo Lab (24) Apply Tebo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Tjian Lab (47) Apply Tjian Lab filter
- Truman Lab (30) Apply Truman Lab filter
- Turaga Lab (12) Apply Turaga Lab filter
- Turner Lab (11) Apply Turner Lab filter
- Wang (Shaohe) Lab (19) Apply Wang (Shaohe) Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
- Zuker Lab (20) Apply Zuker Lab filter
Associated Project Team
Publication Date
- 2024 (1) Apply 2024 filter
- 2023 (1) Apply 2023 filter
- 2022 (26) Apply 2022 filter
- 2021 (19) Apply 2021 filter
- 2020 (19) Apply 2020 filter
- 2019 (25) Apply 2019 filter
- 2018 (26) Apply 2018 filter
- 2017 (31) Apply 2017 filter
- 2016 (18) Apply 2016 filter
- 2015 (57) Apply 2015 filter
- 2014 (46) Apply 2014 filter
- 2013 (58) Apply 2013 filter
- 2012 (78) Apply 2012 filter
- 2011 (92) Apply 2011 filter
- 2010 (100) Apply 2010 filter
- 2009 (102) Apply 2009 filter
- 2008 (100) Apply 2008 filter
- 2007 (85) Apply 2007 filter
- 2006 (89) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
- Remove Non-Janelia filter Non-Janelia
1417 Publications
Showing 51-60 of 1417 resultsPhotochromic fluorescent proteins have become versatile tools in the life sciences, though our understanding of their structure-function relation is limited. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, yet differ only in one or two mutations. We also determined 43 different crystal structures of these mutants. Correlation and principal component analysis of the spectroscopic and structural properties confirmed the complex relationship between structure and spectroscopy, suggesting that the observed variability does not arise from a limited number of mechanisms, but also allowed us to identify consistent trends and to relate these to the spatial organization around the chromophore. We find that particular changes in spectroscopic properties can come about through multiple different underlying mechanisms, of which the polarity of the chromophore environment and hydrogen bonding of the chromophore are key modulators. Furthermore, some spectroscopic parameters, such as the photochromism, appear to be largely determined by a single or a few structural properties, while other parameters, such as the absorption maximum, do not allow a clear identification of a single cause. We also highlight the role of water molecules close to the chromophore in influencing photochromism. We anticipate that our dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Long-lasting internal states, like hunger, aggression, and sexual arousal, pattern ongoing behavior by defining how the sensory world is translated to specific actions that subserve the needs of an animal. Yet how enduring internal states shape sensory processing or behavior has remained unclear. In Drosophila, male flies will perform a lengthy and elaborate courtship ritual, triggered by activation of sexually-dimorphic P1 neurons, in which they faithfully follow and sing to a female. Here, by recording from males as they actively court a fictive ‘female’ in a virtual environment, we gain insight into how the salience of female visual cues is transformed by a male’s internal arousal state to give rise to persistent courtship pursuit. We reveal that the gain of LCt0a visual projection neurons is strongly increased during courtship, enhancing their sensitivity to moving targets. A simple network model based on the LCt0a circuit accurately predicts a male’s tracking of a female over hundreds of seconds, underscoring that LCt0a visual signals, once released by P1-mediated arousal, become coupled to motor pathways to deterministically control his visual pursuit. Furthermore, we find that P1 neuron activity correlates with fluctuations in the intensity of a male’s pursuit, and that their acute activation is sufficient to boost the gain of the LCt0 pathways. Together, these results reveal how alterations in a male’s internal arousal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.Competing Interest StatementThe authors have declared no competing interest.
Densely O-glycosylated mucin domains are found in a broad range of cell surface and secreted proteins, where they play key physiological roles. In addition, alterations in mucin expression and glycosylation are common in a variety of human diseases, such as cancer, cystic fibrosis, and inflammatory bowel diseases. These correlations have been challenging to uncover and establish because tools that specifically probe mucin domains are lacking. Here, we present a panel of bacterial proteases that cleave mucin domains via distinct peptide- and glycan-based motifs, generating a diverse enzymatic toolkit for mucin-selective proteolysis. By mutating catalytic residues of two such enzymes, we engineered mucin-selective binding agents with retained glycoform preferences. StcEE447D is a pan-mucin stain derived from enterohemorrhagic Escherichia coli that is tolerant to a wide range of glycoforms. BT4244E575A derived from Bacteroides thetaiotaomicron is selective for truncated, asialylated core 1 structures commonly associated with malignant and premalignant tissues. We demonstrated that these catalytically inactive point mutants enable robust detection and visualization of mucin-domain glycoproteins by flow cytometry, Western blot, and immunohistochemistry. Application of our enzymatic toolkit to ascites fluid and tissue slices from patients with ovarian cancer facilitated characterization of patients based on differences in mucin cleavage and expression patterns.
Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein–protein interactions by live-cell fluorescence microscopy. The fluorescent chemogenetic reporters greenFAST and redFAST were engineered by protein engineering. They display orthogonal fluorogen recognition and spectral properties allowing efficient multicolor imaging of proteins in live cells and organisms.
The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein—for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins—the products of 40% of all protein-encoding genes7—are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified—but essential—component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.
Undergraduate researchers are the next-generation scientists. Here, we call for more attention from our community to the proper training of undergraduates in biomedical research laboratories. By dissecting common pitfalls, we suggest how to better mentor undergraduates and prepare them for flourishing careers.
Far‐red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far‐red Fluorescence Activating and absorption Shifting Tag), a 14‐kDa monomeric protein that forms a bright far‐red fluorescent assembly with (4‐hydroxy‐3‐methoxy‐phenyl)allylidene rhodanine (HPAR‐3OM). As HPAR‐3OM is essentially non‐ fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR‐3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae and chicken embryo. Beyond enabling genetic encoding of far‐red fluorescence, frFAST allowed the design of a far‐ red chemogenetic reporter of protein‐protein interactions, demonstrating its great potential for the design of innovative far‐red emitting biosensors.
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.
This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.