Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3582 Publications

Showing 3501-3510 of 3582 results
05/06/94 | The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins.
Neufeld TP, Rubin GM
Cell. 1994 May 6;77(3):371-9. doi: 10.1186/gb-2007-8-7-r145

We have identified a Drosophila gene, peanut (pnut), that is related in sequence to the CDC3, CDC10, CDC11, and CDC12 genes of S. cerevisiae. These genes are required for cytokinesis, and their products are present at the bud neck during cell division. We find that pnut is also required for cytokinesis: in pnut mutants, imaginal tissues fail to proliferate and instead develop clusters of large, multinucleate cells. Pnut protein is localized to the cleavage furrow of dividing cells during cytokinesis and to the intercellular bridge connecting postmitotic daughter cells. In addition to its role in cytokinesis, pnut displays genetic interactions with seven in absentia, a gene required for neuronal fate determination in the compound eye, suggesting that pnut may have pleiotropic functions. Our results suggest that this class of proteins is involved in aspects of cytokinesis that have been conserved between flies and yeast.

View Publication Page
04/18/94 | Dimensions of luminescent oxidized and porous silicon structures.
Schuppler S, Friedman S, Marcus M, Adler D, Xie Y, Ross F, Harris TD, Brown W, Chabal Y, Brus L, Citrin P
Physical Review Letters. 1994 Apr 18;72(16):2648-51

X-ray absorption measurements from H-passivated porous Si and from oxidized Si nanocrystals, combined with electron microscopy, ir absorption, α recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the visible luminescence observed in these samples. The mass-weighted average structures in por-Si are particles, not wires, with dimensions significantly smaller than previously reported or proposed.

View Publication Page
04/17/94 | Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.
Spruston N, Jaffe DB, Johnston D
Trends Neurosci. 1994 Apr;17(4):161-6

The dendritic trees of neurons are structurally and functionally complex integrative units receiving thousands of synaptic inputs that have excitatory and inhibitory, fast and slow, and electrical and biochemical effects. The pattern of activation of these synaptic inputs determines if the neuron will fire an action potential at any given point in time and how it will respond to similar inputs in the future. Two critical factors affect the integrative function of dendrites: the distribution of voltage-gated ion channels in the dendritic tree and the passive electrical properties, or 'electrotonic structure', upon which these active channels are superimposed. The authors review recent data from patch-clamp recordings that provide new estimates of the passive membrane properties of hippocampal neurons, and show, with examples, how these properties affect the shaping and attenuation of synaptic potentials as they propagate in the dendrites, as well as how they affect the measurement of current from synapses located in the dendrites. Voltage-gated channels might influence the measurement of 'passive' membrane properties and, reciprocally, passive membrane properties might affect the activation of voltage-gated channels in dendrites.

View Publication Page
Baker Lab
01/01/94 | Behavioral and neurobiological implications of sex-determining factors in Drosophila.
Baker B, Taylor B, Villella. A. , Ryner L, Hall J
Developmental. Genetics. 1994;15(3):275-96

The function of the central nervous system as it controls sex-specific behaviors in Drosophila has been studied with renewed intensity, in the context of genetic factors that influence the development of sexually differentiated aspects of this insect. Three categories of genetic variations that cause anomalies in courtship and mating behaviors are discussed: (1) mutants isolated with regard to courtship defects, of which putatively courtship-specific variants such as the fruitless mutant are a subset; (2) general behavioral and neurological variants (including sensory and learning mutants), whose defects include subnormal reproductive performance; and (3) mutations of genes within the sex-determination regulatory hierarchy of Drosophila, the analysis of which has included studies of reproductive behavior. Recent studies of mutations in two of these categories have provided new insights into the control of neuronally based aspects of sex-specific behavior. The doublesex gene, the final factor acting in the sex-determination hierarchy, had been previously thought to regulate all aspects of sexual differentiation. Yet, it has been recently shown that doublesex does not control at least one neuronally-determined feature of sex-specific anatomy--a muscle in the male's abdomen, whose normal development is, however, dependent on the action of fruitless. These considerations prompted us to examine further (and in some cases re-examine) the influences exerted by sex-determination hierarchy genes on behavior. Our results--notably those obtained from assessments of doublesex mutations' effects on general reproductive actions and on a particular component of the courtship sequence (male "singing" behavior)--lead to the suggestion that there is a previously unrecognized branch within the sex-determination hierarchy, which controls the differentiation of the male- and female- specific phenotypes of Drosophila. This new branch separates from the doublesex-related one immediately before the action of that gene (just after transformer and transformer-2) and appears to control as least some aspects of neuronally determined sexual differentiation of males.

View Publication Page
12/03/93 | The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina.
Heberlein U, Wolff T, Rubin GM
Cell. 1993 Dec 3;75(5):913-26. doi: 10.1186/gb-2007-8-7-r145

Development of the Drosophila retina occurs asynchronously; differentiation, its front marked by the morphogenetic furrow, progresses across the eye disc epithelium over a 2 day period. We have investigated the mechanism by which this front advances, and our results suggest that developing retinal cells drive the progression of morphogenesis utilizing the products of the hedgehog (hh) and decapentaplegic (dpp) genes. Analysis of hh and dpp genetic mosaics indicates that the products of these genes act as diffusible signals in this process. Expression of dpp in the morphogenetic furrow is closely correlated with the progression of the furrow under a variety of conditions. We show that hh, synthesized by differentiating cells, induces the expression of dpp, which appears to be a primary mediator of furrow movement.

View Publication Page
12/01/93 | Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini).
Whitten WM, Young AM, Stern DL
J Chem Ecol. 1993 Dec;19(12):3017-27. doi: 10.1007/BF00980599

We present chemical analysis of four rotten or fungus-infected logs that attracted fragrance-collecting male euglossine bees. Eight of the 10 volatile compounds detected have never been found in the fragrances of orchids pollinated by male euglossine bees. Nonfloral sources of chemicals such as rotting wood may constitute an important fragrance resource for male bees. Since rotten logs produce large quantities of chemicals over long periods of time, such nonfloral sources might be more important than flowers as a source of certain fragrances for some euglossine bee species. Fragrance collecting in euglossine bees might have evolved originally in relation with rotting wood rather than flowers.

View Publication Page
11/26/93 | Single molecules observed by near-field scanning optical microscopy. (With commentary)
Betzig E, Chichester RJ
Science. 1993 Nov 26;262:1422-5. doi: 10.1126/science.262.5138.1422

Individual carbocyanine dye molecules in a sub-monolayer spread have been imaged with near-field scanning optical microscopy. Molecules can be repeatedly detected and spatially localized (to approximately lambda/50 where lambda is the wavelength of light) with a sensitivity of at least 0.005 molecules/(Hz)(1/2) and the orientation of each molecular dipole can be determined. This information is exploited to map the electric field distribution in the near-field aperture with molecular spatial resolution.

Commentary: A paper of many firsts: the first single molecule microscopy; the first extended observations of single molecules under ambient conditions; the first localization of single molecules to near-molecular precision ( 15 nm), the first determination of the dipole axes of single fluorescent molecules; and the first near-molecular resolution optical microscopy, when a single fluorescent molecule was used to map the evanescent electric field components in the vicinity of a 100 nm diameter near-field aperture. Although eventually supplanted by simpler far-field methods, this paper ushered in the era of single molecule imaging and biophysics, and inspired the concept that would eventually lead to PALM. Even today, near-field single molecule detection lives on in the “zero mode waveguide” sequencing approach promoted by Pacific Biosciences.

View Publication Page
Baker Lab
11/01/93 | Sex-lethal, master and slave: the hierarchy of germline sex determination in Drosophila.
Baker B, Oliver B, Kim YJ
Development. 1993 Nov;119(3):897-908

Female sex determination in the germ line of Drosophila melanogaster is regulated by genes functioning in the soma as well as genes that function within the germ line. Genes known or suspected to be involved in germ-line sex determination in Drosophila melanogaster have been examined to determine if they are required upstream or downstream of Sex-lethal+, a known germ-line sex determination gene. Seven genes required for female-specific splicing of germ-line Sex-lethal+ pre-mRNA are identified. These results together with information about the tissues in which these genes function and whether they control sex determination and viability or just sex determination in the germ line have been used to deduce the genetic hierarchy regulating female germ-line sex determination. This hierarchy includes the somatic sex determination genes transformer+, transformer-2+ and doublesex+ (and by inference Sex-lethal+), which control a somatic signal required for female germ-line sex determination, and the germ-line ovarian tumor genes fused+, ovarian tumor+, ovo+, sans fille+, and Sex-lethal+, which are involved in either the reception or interpretation of this somatic sex determination signal. The fused+, ovarian tumor+, ovo+ and sans fille+ genes function upstream of Sex-lethal+ in the germ line.

View Publication Page
10/04/93 | Raman studies of steric hindrance and surface relaxation of stepped H-terminated silicon surfaces.
Hines M, Chabal Y, Harris TD, Harris A
Physical Review Letters. 1993 Oct 4;71(14):2280-83

Polarized angle-resolved Raman spectra of the Si-H stretching vibrations on stepped H-terminated Si(111) surfaces confirm the constrained orientation of the step dihydride derived from ab initio cluster calculations. They further show that the step normal modes involve little concerted motion of the step atoms, indicating that step relaxation reduces the steric interaction much further than predicted.

View Publication Page
09/01/93 | Near-field fluorescence imaging of cytoskeletal actin. (With commentary)
Betzig E, Chichester RJ, Lanni F, Taylor DL
Bioimaging. 1993 Sep;1(3):129-35

Near-field scanning optical microscopy (NSOM) has been used to generate high resolution flourescence images of cytoskeletal actin within fixed mouse fibroblast cells. Comparison with other microscopic methods indicates a transverse resolution well beyond that of confocal microscopy, and contrast far more revealing than in force microscopy. Effects unique to the near field are shown to be involved in the excitation of flourescence, yet the resulting images remain readily interpretable. As an initial demonstration of its utility, the technique is used to analyze the actin-based cytoskeletal structure between stress fibers and in cellular protrusions formed in the process of wound healing.

Commentary: The first superresolution fluorescence imaging of a biological system: the actin cytoskeleton in fixed, cultured fibroblast cells. This work strongly influenced me in two ways. First, calculations based on the signal-to-noise-ratio in images of single actin filaments in the paper suggested that single molecule imaging might be feasible. This was soon proven to be the case (see above). Second, the limitations of exogenous labeling for superresolution microscopy were revealed: samples which appeared correctly stained by conventional microscopy often exhibited sketchy, punctuate labeling of actin filaments as well as substantial non-specific background in the corresponding near field images. Indeed, it was the advent of GFP, with its promise of dense labeling and perfect specificity, that lured me back to superresolution microscopy when I first heard of it in 2003.

View Publication Page