Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 3521-3530 of 4108 results
07/06/07 | S-nitrosylation-induced conformational change in blackfin tuna myoglobin.
Schreiter ER, Rodríguez MM, Weichsel A, Montfort WR, Bonaventura J
Journal of Biological Chemistry. 2007 Jul 6;282(27):19773-80. doi: 10.1074/jbc.M701363200

S-nitrosylation is a post-translational protein modification that can alter the function of a variety of proteins. Despite the growing wealth of information that this modification may have important functional consequences, little is known about the structure of the moiety or its effect on protein tertiary structure. Here we report high-resolution x-ray crystal structures of S-nitrosylated and unmodified blackfin tuna myoglobin, which demonstrate that in vitro S-nitrosylation of this protein at the surface-exposed Cys-10 directly causes a reversible conformational change by "wedging" apart a helix and loop. Furthermore, we have demonstrated in solution and in a single crystal that reduction of the S-nitrosylated myoglobin with dithionite results in NO cleavage from the sulfur of Cys-10 and rebinding to the reduced heme iron, showing the reversibility of both the modification and the conformational changes. Finally, we report the 0.95-A structure of ferrous nitrosyl myoglobin, which provides an accurate structural view of the NO coordination geometry in the context of a globin heme pocket.

View Publication Page
07/01/07 | [Role of Bid protein in the mitochondria and endoplasmic reticulum associated apoptotic pathway].
Hu J, He D, Gao L, Yang C, Cai Z
Zhonghua Xue Ye Xue Za Zhi = Zhonghua Xueyexue Zazhi. 2007 Jul;28(7):466-9. doi: 10.1364/AO.50.001792

To explore the role of Bid protein in the mitochondria and endoplasmic reticulum (ER) associated apoptotic pathway.

View Publication Page
07/01/07 | Cell type-specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb.
Lin B, Chen T, Schild D
The Journal of Physiology. 2007 Jul 1;582(Pt 1):163-75. doi: 10.1113/jphysiol.2006.125963

Multi-neuronal recordings with Ca2+ indicator dyes usually relate [Ca2+]i to action potentials (APs) assuming a stereotypical dependency between the two. However, [Ca2+]i affects and is affected by numerous complex mechanisms that differ from cell type to cell type, from cell compartment to cell compartment. Moreover, [Ca2+]i depends on the specific way a cell is activated. Here we investigate, by combining calcium imaging and on-cell patch clamp recordings, the relationship between APs (spiking) and somatic [Ca2+]i in mitral and granule cells of the olfactory bulb in Xenopus laevis tadpoles. Both cell types exhibit ongoing and odour-modulated [Ca2+]i dynamics. In mitral cells, the occurrence of APs in both spontaneous and odour-evoked situations correlates tightly to step-like [Ca2+]i increases. Moreover, odorant-induced suppression of spontaneous firing couples to a decrease in [Ca2+]i. In contrast, granule cells show a substantial number of uncorrelated events such as increases in [Ca2+]i without APs occurring or APs without any effect upon [Ca2+]i. The correlation between spiking and [Ca2+]i is low, possibly due to somatic NMDAR-mediated and subthreshold voltage-activated Ca2+ entries, and thus does not allow a reliable prediction of APs based on calcium imaging. Taken together, our results demonstrate that the relationship between somatic [Ca2+]i and APs can be cell type specific. Taking [Ca2+]i dynamics as an indicator for spiking activity is thus only reliable if the correlation has been established in the system of interest. When [Ca2+]i and APs are precisely correlated, fast calcium imaging is an extremely valuable tool for determining spatiotemporal patterns of APs in neuronal population.

View Publication Page
07/01/07 | Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum).
Brisson JA, Davis GK, Stern DL
Evol Dev. 2007 Jul-Aug;9(4):338-46. doi: 10.1111/j.1525-142X.2007.00170.x

The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued polyphenisms, in which discrete, alternative phenotypes are produced. At low-density, parthenogenetic females produce unwinged female progeny, but at high-density females produce progeny that develop with wings. These alternative phenotypes represent a solution to the competing demands of dispersal and reproduction. Males also develop as either winged or unwinged, but these alternatives are determined by a genetic polymorphism. Winged and unwinged males are morphologically less distinct from each other than winged and unwinged females, possibly because males experience fewer trade-offs between dispersal and reproduction. To assess whether shared physiological differences mirror the shared morphological differences that characterize the wing polyphenism and polymorphism, we used a cDNA microarray representing an estimated 10% of the coding genome (1734 genes) to examine differential transcript accumulation between winged and unwinged females and males. We identified several transcripts that differentially accumulate between winged and unwinged morphs in both sexes, the majority of which are involved in energy production. Unexpectedly, the extent of differential transcript accumulation between winged and unwinged morphs was greater for adult males than for adult females. Together, these results suggest not only that similar physiological differences underlie the polyphenism and polymorphism, but that male morphs, like females, are subject to trade-offs between reproduction and dispersal that are reflected in levels of transcript accumulation and possibly genome-wide patterns of gene regulation. These data also provide a baseline for future studies of the molecular and physiological basis of life-history trade-offs.

View Publication Page
07/01/07 | Dynamic properties of large-field and small-field optomotor flight responses in Drosophila.
Duistermars BJ, Reiser MB, Zhu Y, Frye MA
Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2007 Jul;193:787-99. doi: 10.1016/j.cub.2010.06.072

Optomotor flight control in houseflies shows bandwidth fractionation such that steering responses to an oscillating large-field rotating panorama peak at low frequency, whereas responses to small-field objects peak at high frequency. In fruit flies, steady-state large-field translation generates steering responses that are three times larger than large-field rotation. Here, we examine the optomotor steering reactions to dynamically oscillating visual stimuli consisting of large-field rotation, large-field expansion, and small-field motion. The results show that, like in larger flies, large-field optomotor steering responses peak at low frequency, whereas small-field responses persist under high frequency conditions. However, in fruit flies large-field expansion elicits higher magnitude and tighter phase-locked optomotor responses than rotation throughout the frequency spectrum, which may suggest a further segregation within the large-field pathway. An analysis of wing beat frequency and amplitude reveals that mechanical power output during flight varies according to the spatial organization and motion dynamics of the visual scene. These results suggest that, like in larger flies, the optomotor control system is organized into parallel large-field and small-field pathways, and extends previous analyses to quantify expansion-sensitivity for steering reflexes and flight power output across the frequency spectrum.

View Publication Page
07/01/07 | Hysteresis phenomena of the intelligent driver model for traffic flow.
Dahui W, Ziqiang W, Ying F
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 2007 Jul;76(1 Pt 2):016105

We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

View Publication Page
07/01/07 | Modulation of neuronal voltage-activated calcium and sodium channels by polyamines and pH.
Chen W, Harnett MT, Smith SM
Channels . 2007 Jul-Aug;1(4):281-90

The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca(2+) channels (VACCs) and voltage-activated Na(+) channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concentration-dependent manner with IC(50)s for spermine, spermidine, and putrescine of 4.7 +/- 0.7, 11.2 +/- 1.4 and 90 +/- 36 mM, respectively. Polyamines caused inhibition by shifting the VACC half-activation voltage (V(0.5)) to depolarized potentials and by reducing total VACC permeability. The shift was described by Gouy-Chapman-Stern theory with a surface charge density of 0.120 +/- 0.005 e(-) nm(-2) and a surface potential of -19 mV. Attenuation of spermidine and spermine inhibition of VACC at decreased pH was explained by H(+) titration of surface charge. Polyamine-mediated effects also decreased at elevated pH due to the inhibitors having lower valence and being less effective at screening surface charge. Polyamines affected VANC currents indirectly by reducing TTX inhibition of VANCs at high pH. This may reflect surface charge induced decreases in the local TTX concentration or polyamine-TTX interactions. In conclusion, polyamines inhibit neuronal VACCs via complex interactions with extracellular H(+) and Ca. Many of the observed effects can be explained by a model incorporating polyamine binding, H(+) binding and surface charge screening.

View Publication Page
Gonen Lab
07/01/07 | Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis.
Franck AD, Powers AF, Gestaut DR, Gonen T, Davis TN, Asbury CL
Nature Cell Biology. 2007 Jul;9(7):832-7. doi: 10.1038/ncb1609

In dividing cells, kinetochores couple chromosomes to the tips of growing and shortening microtubule fibres and tension at the kinetochore-microtubule interface promotes fibre elongation. Tension-dependent microtubule fibre elongation is thought to be essential for coordinating chromosome alignment and separation, but the mechanism underlying this effect is unknown. Using optical tweezers, we applied tension to a model of the kinetochore-microtubule interface composed of the yeast Dam1 complex bound to individual dynamic microtubule tips. Higher tension decreased the likelihood that growing tips would begin to shorten, slowed shortening, and increased the likelihood that shortening tips would resume growth. These effects are similar to the effects of tension on kinetochore-attached microtubule fibres in many cell types, suggesting that we have reconstituted a direct mechanism for microtubule-length control in mitosis.

View Publication Page
07/01/07 | Thermoelectric manipulation of aqueous droplets in microfluidic devices.
Sgro AE, Allen PB, Chiu DT
Anal Chem. 07/2007;79(13):4845-51. doi: 10.1021/ac062458a

This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics.

View Publication Page
07/01/07 | Variation in fiber number of a male-specific muscle between Drosophila species: a genetic and developmental analysis.
Orgogozo V, Muro NM, Stern DL
Evol Dev. 2007 Jul-Aug;9(4):368-77. doi: 10.1111/j.1525-142X.2007.00174.x

We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.

View Publication Page