Filter
Associated Lab
- 43418 (30) Apply 43418 filter
- 43427 (22) Apply 43427 filter
- 43430 (64) Apply 43430 filter
- 43438 (5) Apply 43438 filter
- 46293 (6) Apply 46293 filter
- Ahrens Lab (48) Apply Ahrens Lab filter
- Aso Lab (32) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (106) Apply Betzig Lab filter
- Beyene Lab (8) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (43) Apply Branson Lab filter
- Card Lab (31) Apply Card Lab filter
- Cardona Lab (63) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (11) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (10) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (43) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (44) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (14) Apply Espinosa Medina Lab filter
- Feliciano Lab (5) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (24) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (25) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (49) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (18) Apply Hermundstad Lab filter
- Hess Lab (62) Apply Hess Lab filter
- Jayaraman Lab (41) Apply Jayaraman Lab filter
- Ji Lab (32) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (74) Apply Keller Lab filter
- Koay Lab (16) Apply Koay Lab filter
- Lavis Lab (117) Apply Lavis Lab filter
- Lee (Albert) Lab (31) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (24) Apply Li Lab filter
- Lippincott-Schwartz Lab (143) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (5) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (50) Apply Liu (Zhe) Lab filter
- Looger Lab (134) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (4) Apply O'Shea Lab filter
- Pachitariu Lab (33) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (12) Apply Pedram Lab filter
- Podgorski Lab (15) Apply Podgorski Lab filter
- Reiser Lab (41) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (37) Apply Romani Lab filter
- Rubin Lab (131) Apply Rubin Lab filter
- Saalfeld Lab (51) Apply Saalfeld Lab filter
- Scheffer Lab (35) Apply Scheffer Lab filter
- Schreiter Lab (54) Apply Schreiter Lab filter
- Sgro Lab (20) Apply Sgro Lab filter
- Shroff Lab (12) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (79) Apply Singer Lab filter
- Spruston Lab (89) Apply Spruston Lab filter
- Stern Lab (141) Apply Stern Lab filter
- Sternson Lab (53) Apply Sternson Lab filter
- Stringer Lab (18) Apply Stringer Lab filter
- Svoboda Lab (130) Apply Svoboda Lab filter
- Tebo Lab (26) Apply Tebo Lab filter
- Tervo Lab (8) Apply Tervo Lab filter
- Tillberg Lab (14) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (87) Apply Truman Lab filter
- Turaga Lab (43) Apply Turaga Lab filter
- Turner Lab (25) Apply Turner Lab filter
- Vale Lab (3) Apply Vale Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (29) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- COSEM (2) Apply COSEM filter
- Fly Descending Interneuron (7) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (13) Apply Fly Functional Connectome filter
- Fly Olympiad (4) Apply Fly Olympiad filter
- FlyEM (55) Apply FlyEM filter
- FlyLight (33) Apply FlyLight filter
- GENIE (33) Apply GENIE filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (14) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (11) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2023 (13) Apply 2023 filter
- 2022 (202) Apply 2022 filter
- 2021 (187) Apply 2021 filter
- 2020 (191) Apply 2020 filter
- 2019 (191) Apply 2019 filter
- 2018 (230) Apply 2018 filter
- 2017 (210) Apply 2017 filter
- 2016 (207) Apply 2016 filter
- 2015 (249) Apply 2015 filter
- 2014 (237) Apply 2014 filter
- 2013 (192) Apply 2013 filter
- 2012 (187) Apply 2012 filter
- 2011 (188) Apply 2011 filter
- 2010 (160) Apply 2010 filter
- 2009 (157) Apply 2009 filter
- 2008 (139) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
3582 Publications
Showing 3521-3530 of 3582 resultsExamined kin discrimination and colony defense in soldier-producing aphids from the surface of 3 galls. Soldiers always attacked conspecific nonsoldiers, regardless of origin, and never attacked conspecific soldiers. Soldier attacks of nonsoldiers may exclude unrelated nonsoldier aphids from the gall where they would propagate and compete with resident aphids. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
We have conducted a genetic screen for mutations that decrease the effectiveness of signaling by a protein tyrosine kinase, the product of the Drosophila melanogaster sevenless gene. These mutations define seven genes whose wild-type products may be required for signaling by sevenless. Four of the seven genes also appear to be essential for signaling by a second protein tyrosine kinase, the product of the Ellipse gene. The putative products of two of these seven genes have been identified. One encodes a ras protein. The other locus encodes a protein that is homologous to the S. cerevisiae CDC25 protein, an activator of guanine nucleotide exchange by ras proteins. These results suggest that the stimulation of ras protein activity is a key element in the signaling by sevenless and Ellipse and that this stimulation may be achieved by activating the exchange of GTP for bound GDP by the ras protein.
During a four month study of male territoriality males of the euglossine bee Eulaema meriana exhibited the two alternative behavior patterns of territoriality and transiency. Territorial males patrolled an area adjacent to a tree upon which they perched. Territorial males utilized the same territory for up to 49 days, though often not on consecutive days, and appeared to non-violently relinquish territories to new males. Transients did not defend territories but flew from one territory to another and flew with the territorial male around the territory, rarely bumping, and never grappling. Transient males left the territory soon after the territorial male flew back and forth in front of the perch tree in a zig-zag flight. The alternative behaviors were correlated with wing wear such that males with little wing wear defended territories and males with considerable wing wear pursued a transient strategy. Behavior patterns were not correlated with head width. Comparison of territory trees with the territory trees of a closely related species indicate that each species utilized trees of a certain diameter class for perching. In addition, analysis of hemispherical canopy photographs indicates that males appeared to prefer territories that received a maximum of diffuse sunlight but a minimum of direct sunlight. Both territorial and transient males consistently returned to specific territories over their lifetime but appeared to travel long distances to forage for fragrances. Territorial and transient males visited fragrance baits with equal frequency suggesting that non-territorial, as well as territorial, males required fragrances.
The maleless (mle) gene is one of four known regulatory loci required for increased transcription (dosage compensation) of X-linked genes in D. melanogaster males. A predicted mle protein (MLE) contains seven short segments that define a superfamily of known and putative RNA and DNA helicases. MLE, while present in the nuclei of both male and female cells, differs in its association with polytene X chromosomes in the two sexes. MLE is associated with hundreds of discrete sites along the length of the X chromosome in males and not in females. The predominant localization of MLE to the X chromosome in males makes it a strong candidate to be a direct regulator of dosage compensation.
Histological staining of wild-type and sevenless transgenic Drosophila melanogaster bearing Rh3-lacZ fusion genes permits the selective visualization of polarization-sensitive R7 and R8 photoreceptor cells located along the dorsal anterior eye margin. Diffusion of beta-galactosidase throughout these cells reveals that they project long axons to the two most peripheral synaptic target rows of the dorsal posterior medulla, defining a specialized marginal zone of this optic lobe. Comparison of the staining patterns of marginal and nonmarginal Rh3-lacZ-expressing photoreceptor cells in the same histological preparations suggest that the marginal cells possess morphologically specialized axons and synaptic terminals. These findings are discussed with reference to the neuroanatomy of the corresponding dorsal marginal eye and optic lobe regions of the larger dipterans Musca and Calliphora, and in relation to the ability of Drosophila to orient to polarized light.
The expression of GABA is restricted to the progeny of only six of the 24 identified postembryonic lineages in the thoracic ganglia of the tobacco hornworm, Manduca sexta (Witten and Truman, 1991). It is colocalized with a peptide similar to molluscan small cardioactive peptide B (SCPB) in some of the neurons in two of the six lineages. By combining chemical ablation of the neuroblasts at specific larval stages with birth dating of the progeny, we tested whether the expression of GABA and the SCPB-like peptide was determined strictly by cell lineage or involved cellular interactions among the members of individual clonal groups. Chemical ablation of the six specific neuroblasts that produced the GABA-positive neurons (E, K, M, N, T, and X) or of the two that produced the GABA + SCPB-like-immunoreactive neurons (K, M) prior to the generation of their lineages resulted in the loss of these immunoreactivities. These results suggest that regulation between lineages did not occur. Ablation of the K and M neuroblasts after they had produced a small portion of their lineages had no effect on the expression of GABA, but did affect the pattern of the SCPB-like immunoreactivity. Combining birth-dating techniques with transmitter immunocytochemistry revealed that it was the position in the birth order and not interactions among the clonally related neurons that influenced the peptidergic phenotype. These results suggest that cell lineage is involved in establishing the GABAergic phenotype and that both cell lineage and birth order influence the determination of the peptidergic phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)
Human mitochondrial transcription factor 1 (mtTF1) has been sequenced and is a nucleus-encoded DNA binding protein of 204 amino acids (24,400 daltons). Expression of human mtTF1 in bacteria yields a protein with correct physical properties and the ability to activate mitochondrial DNA promoters. Analysis of the protein’s sequence reveals no similarities to any other DNA binding proteins except for the existence of two domains that are characteristic of high mobility group (HMG) proteins. Human mtTF1 is most closely related to a DNA binding HMG-box region in hUBF, a human protein known to be important for transcription by RNA polymerase I.
Defects in mitochondrial DNA (mtDNA) are associated with several different human diseases, including the mitochondrial encephalomyopathies. The mutations include deletions but also duplications and point mutations. Individuals with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) carry a common A-to-G substitution in a highly conserved portion of the gene for transfer RNA(Leu(UUR)). Although the MELAS mutation may be comparable to the defect in the tRNA(Lys) gene associated with MERRF (myoclonus epilepsy associated with ragged-red fibres), it is also embedded in the middle of a tridecamer sequence necessary for the formation of the 3’ ends of 16S ribosomal RNA in vitro. We found that the MELAS mutation results in severe impairment of 16S rRNA transcription termination, which correlates with a reduced affinity of the partially purified termination protein for the MELAS template. This suggests that the molecular defect in MELAS is the inability to produce the correct type and quantity of rRNA relative to other mitochondrial gene products.
In near-field scanning optical microscopy, a light source or detector with dimensions less than the wavelength (lambda) is placed in close proximity (lambda/50) to a sample to generate images with resolution better than the diffraction limit. A near-field probe has been developed that yields a resolution of approximately 12 nm ( approximately lambda/43) and signals approximately 10(4)- to 10(6)-fold larger than those reported previously. In addition, image contrast is demonstrated to be highly polarization dependent. With these probes, near-field microscopy appears poised to fulfill its promise by combining the power of optical characterization methods with nanometric spatial resolution.
In near-field scanning optical microscopy, a light source or detector with dimensions less than the wavelength (lambda) is placed in close proximity (lambda/50) to a sample to generate images with resolution better than the diffraction limit. A near-field probe has been developed that yields a resolution of approximately 12 nm ( approximately lambda/43) and signals approximately 10(4)- to 10(6)-fold larger than those reported previously. In addition, image contrast is demonstrated to be highly polarization dependent. With these probes, near-field microscopy appears poised to fulfill its promise by combining the power of optical characterization methods with nanometric spatial resolution.
Commentary: Introduced the adiabatically tapered single mode fiber probe to near-field scanning optical microscopy which, together with shear force feedback, made the technique a practical reality. Although earlier claims of superresolution via near-field microscopy existed for nearly a decade, this paper was the first to convincingly break Abbe’s limit with visible light, as demonstrated by reproducibly resolving known, complex nanoscale patterns having features separated by much less than the wavelength. Whereas our fiber probe and shear force technologies were soon widely adopted and key to many novel applications (see above), the earlier methods proved to be technological dead ends, never achieving the results of their original claims. This experience taught me the most valuable lesson of my career: while it’s bad to bullshit others, it’s even worse to bullshit yourself. It’s a lesson sadly unheeded by many current practitioners of superresolution microscopy.