Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

19 Publications

Showing 11-19 of 19 results
Your Criteria:
    Singer Lab
    07/12/13 | mRNA on the move: the road to its biological destiny.
    Eliscovich C, Buxbaum AR, Katz ZB, Singer RH
    The Journal of Biological Chemistry. 2013 Jul 12;288(28):20361-8. doi: 10.1074/jbc.R113.452094

    Cells have evolved to regulate the asymmetric distribution of specific mRNA targets to institute spatial and temporal control over gene expression. Over the last few decades, evidence has mounted as to the importance of localization elements in the mRNA sequence and their respective RNA-binding proteins. Live imaging methodologies have shown mechanistic details of this phenomenon. In this minireview, we focus on the advanced biochemical and cell imaging techniques used to tweeze out the finer aspects of mechanisms of mRNA movement.

    View Publication Page
    07/17/13 | NGL-2 Regulates Pathway-Specific Neurite Growth and Lamination, Synapse Formation, and Signal Transmission in the Retina
    Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D
    Journal of Neuroscience. May-07-2014;33(29):11949 - 11959. doi: 10.1523/JNEUROSCI.1521-13.2013

    Parallel processing is an organizing principle of many neural circuits. In the retina, parallel neuronal pathways process signals from rod and cone photoreceptors and support vision over a wide range of light levels. Toward this end, rods and cones form triad synapses with dendrites of distinct bipolar cell types, and the axons or dendrites, respectively, of horizontal cells (HCs). The molecular cues that promote the formation of specific neuronal pathways remain largely unknown. Here, we discover that developing and mature HCs express the leucine-rich repeat (LRR)-containing protein netrin-G ligand 2 (NGL-2). NGL-2 localizes selectively to the tips of HC axons, which form reciprocal connections with rods. In mice with null mutations in Ngl-2 (Ngl-2⁻/⁻), many branches of HC axons fail to stratify in the outer plexiform layer (OPL) and invade the outer nuclear layer. In addition, HC axons expand lateral territories and increase coverage of the OPL, but establish fewer synapses with rods. NGL-2 can form transsynaptic adhesion complexes with netrin-G2, which we show to be expressed by photoreceptors. In Ngl-2⁻/⁻ mice, we find specific defects in the assembly of presynaptic ribbons in rods, indicating that reverse signaling of complexes involving NGL-2 regulates presynaptic maturation. The development of HC dendrites and triad synapses of cone photoreceptors proceeds normally in the absence of NGL-2 and in vivo electrophysiology reveals selective defects in rod-mediated signal transmission in Ngl-2⁻/⁻ mice. Thus, our results identify NGL-2 as a central component of pathway-specific development in the outer retina.

    View Publication Page
    07/02/13 | Shortening of the elastic tandem immunoglobulin segment of titin leads to diastolic dysfunction.
    Chung CS, Hutchinson KR, Methawasin M, Saripalli C, Smith JE, Hidalgo CG, Luo X, Labeit S, Guo C, Granzier HL
    Circulation. 2013 Jul 2;128(1):19-28. doi: 10.1161/CIRCULATIONAHA.112.001268

    BACKGROUND: Diastolic dysfunction is a poorly understood but clinically pervasive syndrome that is characterized by increased diastolic stiffness. Titin is the main determinant of cellular passive stiffness. However, the physiological role that the tandem immunoglobulin (Ig) segment of titin plays in stiffness generation and whether shortening this segment is sufficient to cause diastolic dysfunction need to be established. METHODS AND RESULTS: We generated a mouse model in which 9 Ig-like domains (Ig3-Ig11) were deleted from the proximal tandem Ig segment of the spring region of titin (IG KO). Exon microarray analysis revealed no adaptations in titin splicing, whereas novel phospho-specific antibodies did not detect changes in titin phosphorylation. Passive myocyte stiffness was increased in the IG KO, and immunoelectron microscopy revealed increased extension of the remaining titin spring segments as the sole likely underlying mechanism. Diastolic stiffness was increased at the tissue and organ levels, with no consistent changes in extracellular matrix composition or extracellular matrix-based passive stiffness, supporting a titin-based mechanism for in vivo diastolic dysfunction. Additionally, IG KO mice have a reduced exercise tolerance, a phenotype often associated with diastolic dysfunction. CONCLUSIONS: Increased titin-based passive stiffness is sufficient to cause diastolic dysfunction with exercise intolerance.

    View Publication Page
    Singer Lab
    07/05/13 | Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter-regulated transcription site.
    Newhart A, Rafalska-Metcalf IU, Yang T, Joo LM, Powers SL, Kossenkov AV, Lopez-Jones M, Singer RH, Showe LC, Skordalakes E, Janicki SM
    The Journal of Biological Chemistry. 2013 Jul 5;288(27):19882-99. doi: 10.1074/jbc.M113.473181

    Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the mechanism of H3.3 recruitment nor its essential function is well understood. Several different chaperones regulate H3.3 assembly at distinct sites. The H3.3 chaperone, Daxx, and the chromatin-remodeling factor, ATRX, are required for H3.3 incorporation and heterochromatic silencing at telomeres, pericentromeres, and the cytomegalovirus (CMV) promoter. By evaluating H3.3 dynamics at a CMV promoter-regulated transcription site in a genetic background in which RI chromatin assembly is blocked, we have been able to decipher the regulatory events upstream of RI nucleosomal deposition. We find that at the activated transcription site, H3.3 accumulates with sense and antisense RNA, suggesting that it is recruited through an RNA-mediated mechanism. Sense and antisense transcription also increases after H3.3 knockdown, suggesting that the RNA signal is amplified when chromatin assembly is blocked and attenuated by nucleosomal deposition. Additionally, we find that H3.3 is still recruited after Daxx knockdown, supporting a chaperone-independent recruitment mechanism. Sequences in the H3.3 N-terminal tail and αN helix mediate both its recruitment to RNA at the activated transcription site and its interaction with double-stranded RNA in vitro. Interestingly, the H3.3 gain-of-function pediatric glioblastoma mutations, G34R and K27M, differentially affect H3.3 affinity in these assays, suggesting that disruption of an RNA-mediated regulatory event could drive malignant transformation.

    View Publication Page
    07/08/13 | The evolution of Drosophila melanogaster as a model for alcohol research.
    Devineni AV, Heberlein U
    Annual Reviews of Neuroscience. 2013 Jul 8;36:121-38. doi: 10.1146/annurev-neuro-062012-170256

    Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.

    View Publication Page
    07/01/13 | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective.
    Rivas E
    RNA Biology. 2013 Jul 1;10(7):1185-96. doi: 10.4161/rna.24971

    Any method for RNA secondary structure prediction is determined by four ingredients. The architecture is the choice of features implemented by the model (such as stacked basepairs, loop length distributions, etc.). The architecture determines the number of parameters in the model. The scoring scheme is the nature of those parameters (whether thermodynamic, probabilistic, or weights). The parameterization stands for the specific values assigned to the parameters. These three ingredients are referred to as "the model." The fourth ingredient is the folding algorithms used to predict plausible secondary structures given the model and the sequence of a structural RNA. Here, I make several unifying observations drawn from looking at more than 40 years of methods for RNA secondary structure prediction in the light of this classification. As a final observation, there seems to be a performance ceiling that affects all methods with complex architectures, a ceiling that impacts all scoring schemes with remarkable similarity. This suggests that modeling RNA secondary structure by using intrinsic sequence-based plausible "foldability" will require the incorporation of other forms of information in order to constrain the folding space and to improve prediction accuracy. This could give an advantage to probabilistic scoring systems since a probabilistic framework is a natural platform to incorporate different sources of information into one single inference problem.

    View Publication Page
    Looger LabLeonardo Lab
    07/03/13 | Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina.
    Borghuis BG, Marvin JS, Looger LL, Demb JB
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 2013 Jul 3;33(27):10972-85. doi: 10.1523/JNEUROSCI.1241-13.2013

    Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell’s subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR’s dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.

    View Publication Page
    Jayaraman LabLooger LabSvoboda LabSchreiter LabGENIE
    07/18/13 | Ultrasensitive fluorescent proteins for imaging neuronal activity.
    Chen T, Wardill TJ, Sun Y, Pulvar SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS
    Nature. 2013 Jul 18;499:295-300. doi: 10.1038/nature12354

    Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

    View Publication Page
    07/30/13 | ViSP: representing single-particle localizations in three dimensions.
    Beheiry ME, Dahan M
    Nature Methods. 2013 Jul 30;10(8):689-90. doi: 10.1038/nmeth.2566