Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

19 Publications

Showing 1-10 of 19 results
Your Criteria:
    05/26/21 | An Accumulation-of-Evidence Task Using Visual Pulses for Mice Navigating in Virtual Reality
    Pinto L, Koay SA, Engelhard B, Yoon AM, Deverett B, Thiberge SY, Witten IB, Tank DW, Brody CD
    Frontiers in Behavioral Neuroscience. Jun-03-2018;12:. doi: 10.3389/fnbeh.2018.00036

    The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts.

     
     
     

    View Publication Page
    01/01/21 | An Acquired and Endogenous Glycocalyx Forms a Bidirectional “Don’t Eat” and “Don’t Eat Me” Barrier to Phagocytosis
    Imbert PR, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA
    Current Biology. Jan-01-2021;31(1):77 - 89.e5. doi: 10.1016/j.cub.2020.09.082

    Macrophages continuously survey their environment in search of pathogens or apoptotic corpses or debris. Targets intended for clearance expose ligands that initiate their phagocytosis ("eat me" signals), while others avoid phagocytosis by displaying inhibitory ligands ("don't eat me" signals). We report that such ligands can be obscured by the glycosaminoglycans and glycoproteins that coat pathogenic as well as malignant phagocytic targets. In addition, a reciprocal barrier of self-synthesized or acquired glycocalyx components on the macrophage surface shrouds phagocytic receptors, curtailing their ability to engage particles. The coating layers of macrophages and their targets hinder phagocytosis by both steric and electrostatic means. Their removal by enzymatic means is shown to markedly enhance phagocytic efficiency. In particular, we show that the removal of mucins, which are overexpressed in cancer cells, facilitates their clearance. These results shed light on the physical barriers that modulate phagocytosis, which have been heretofore underappreciated.

    View Publication Page
    04/01/21 | Arnold tongues in oscillator systems with nonuniform spatial driving.
    Golden A, Sgro AE, Mehta P
    Phys Rev E. 04/2021;103(4-1):042211. doi: 10.1103/PhysRevE.103.042211

    Nonlinear oscillator systems are ubiquitous in biology and physics, and their control is a practical problem in many experimental systems. Here we study this problem in the context of the two models of spatially coupled oscillators: the complex Ginzburg-Landau equation (CGLE) and a generalization of the CGLE in which oscillators are coupled through an external medium (emCGLE). We focus on external control drives that vary in both space and time. We find that the spatial distribution of the drive signal controls the frequency ranges over which oscillators synchronize to the drive and that boundary conditions strongly influence synchronization to external drives for the CGLE. Our calculations also show that the emCGLE has a low density regime in which a broad range of frequencies can be synchronized for low drive amplitudes. We study the bifurcation structure of these models and find that they are very similar to results for the driven Kuramoto model, a system with no spatial structure. We conclude by discussing qualitative implications of our results for controlling coupled oscillator systems such as the social amoebae Dictyostelium and populations of Belousov Zhabotinsky (BZ) catalytic particles using spatially structured external drives.

    View Publication Page
    11/30/21 | Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging.
    Benaissa H, Ounoughi K, Aujard I, Fischer E, Goïame R, Nguyen J, Tebo AG, Li C, Le Saux T, Bertolin G, Tramier M, Danglot L, Pietrancosta N, Morin X, Jullien L, Gautier A
    Nature Communications. 2021 Nov 30;12(1):6989. doi: 10.1038/s41467-021-27334-0

    Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.

    View Publication Page
    03/15/21 | Enhanced Photoinduced Electron Transfer Through a Tyrosine Relay in a De Novo Designed Protein Scaffold Bearing a Photoredox Unit and a Fe <sup>II</sup> S <sub>4</sub> Site
    Tebo A, Quaranta A, Pecoraro VL, Aukauloo A
    ChemPhotoChem. 03/2021;5(7):665 - 668. doi: 10.1002/cptc.v5.710.1002/cptc.202100014

    Electron transfer (ET) processes in biology over long distances often proceed via a series of hops, which reduces the distance dependence of the rate of ET. The protein matrix itself can be involved in mediating ET directly through the participation of redox-active amino acids. We have designed an electron transfer chain incorporated into a de novo protein scaffold, which is capable of photoinduced intramolecular electron transfer between a photoredox unit and a FeIIS4 site through a tyrosine amino acid relay. The kinetics were characterized by nanosecond laser pulse photolysis and revealed that electron transfer from [RuIIIbpymal]3+ proceeds most efficiently via a tyrosine located ∼16 Å from Rubpymal (bpymal=1-((1-([2,2′-bipyridin]-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-pyrrole-2,5-dione). Removal of the tyrosine as the electron relay station results in a 20-fold decrease in the apparent rate constant for the electron transfer.

    View Publication Page
    09/11/21 | Erratum: Label-free imaging of fibroblast membrane interfaces and protein signatures with vibrational infrared photothermal and phase signals: publisher's note.
    Samolis PD, Langley D, O'Reilly BM, Oo Z, Hilzenrat G, Erramilli S, Sgro AE, McArthur S, Sander MY
    Biomed Opt Express. 09/2021;12(9):5400. doi: 10.1364/BOE.438946

    [This corrects the article on p. 303 in vol. 12, PMID: 33520386.].

    View Publication Page
    10/19/21 | Ex Utero Culture of Mouse Embryos from Pregastrulation to Advanced Organogenesis.
    Aguilera-Castrejon A, Hanna JH
    J Vis Exp. 10/2021(176):. doi: 10.3791/63160

    Postimplantation mammalian embryo culture methods have been generally inefficient and limited to brief periods after dissection out of the uterus. Platforms have been recently developed for highly robust and prolonged ex utero culture of mouse embryos from egg-cylinder stages until advanced organogenesis. These platforms enable appropriate and faithful development of pregastrulating embryos (E5.5) until the hind limb formation stage (E11). Late gastrulating embryos (E7.5) are grown in rotating bottles in these settings, while extended culture from pregastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle cultures. In addition, sensitive regulation of O2 and CO2 concentration, gas pressure, glucose levels, and the use of a specific ex utero culture medium are critical for proper embryo development. Here, a detailed step-by-step protocol for extended ex utero mouse embryo culture is provided. The ability to grow normal mouse embryos ex utero from gastrulation to organogenesis represents a valuable tool for characterizing the effect of different experimental perturbations during embryonic development.

    View Publication Page
    05/05/21 | Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis.
    Aguilera-Castrejon A, Oldak B, Shani T, Ghanem N, Itzkovich C, Slomovich S, Tarazi S, Bayerl J, Chugaeva V, Ayyash M, Ashouokhi S, Sheban D, Livnat N, Lasman L, Viukov S, Zerbib M, Addadi Y, Rais Y, Cheng S, Stelzer Y, Keren-Shaul H, Shlomo R, Massarwa R, Novershtern N, Maza I, Hanna JH
    Nature. 05/2021;593(7857):119-124. doi: 10.1038/s41586-021-03416-3

    The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.

    View Publication Page
    02/12/21 | Molecular profiling of single neurons of known identity in two ganglia from the crab <i>Cancer borealis</i>
    Northcutt AJ, Kick DR, Otopalik AG, Goetz BM, Harris RM, Santin JM, Hofmann HA, Marder E, Schulz DJ
    Proceedings of the National Academy of Sciences. 2021 Feb 12;116(52):26980 - 26990. doi: 10.1073/pnas.1911413116

    Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.

    View Publication Page
    05/19/21 | Multimodal patterns of inhibitory activity in cerebellar cortex
    Chie Satou , Rainer W. Friedrich
    Neuron. 05/2021;109:1590-1592. doi: https://doi.org/10.1016/j.neuron.2021.04.029

    In this issue of Neuron, Gurnani and Silver (2021) report that activity across Golgi cells, a major type of inhibitory interneuron in the cerebellar cortex, is multidimensional and modulated by behavior. These results suggest multiple functions for inhibition in cerebellar computations.

    View Publication Page