Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

64 Publications

Showing 31-40 of 64 results
Your Criteria:
    Tjian Lab
    10/10/08 | MyoD targets TAF3/TRF3 to activate myogenin transcription.
    Deato MD, Marr MT, Sottero T, Inouye C, Hu P, Tjian R
    Molecular Cell. 2008 Oct 10;32(1):96-105. doi: 10.1073/pnas.1100640108

    Skeletal muscle differentiation requires a cascade of transcriptional events to control the spatial and temporal expression of muscle-specific genes. Until recently, muscle-specific transcription was primarily attributed to prototypic enhancer-binding factors, while the role of core promoter recognition complexes in directing myogenesis remained unknown. Here, we report the development of a purified reconstituted system to analyze the properties of a TAF3/TRF3 complex in directing transcription initiation at the Myogenin promoter. Importantly, this new complex is required to replace the canonical TFIID to recapitulate MyoD-dependent activation of Myogenin. In vitro and cell-based assays identify a domain of TAF3 that mediates coactivator functions targeted by MyoD. Our findings also suggest changes to CRSP/Mediator in terminally differentiated myotubes. This switching of the core promoter recognition complex during myogenesis allows a more balanced division of labor between activators and TAF coactivators, thus providing another strategy to accommodate cell-specific regulation during metazoan development.

    View Publication Page
    Tjian Lab
    06/21/02 | Neurodegeneration. A glutamine-rich trail leads to transcription factors.
    Freiman RN, Tjian R
    Science . 2002 Jun 21;296(5576):2149-50. doi: 10.1073/pnas.1100640108
    Tjian Lab
    01/10/07 | Novel TRF1/BRF target genes revealed by genome-wide analysis of Drosophila Pol III transcription.
    Isogai Y, Takada S, Tjian R, Kele\c s S
    The EMBO Journal. 2007 Jan 10;26(1):79-89. doi: 10.1073/pnas.1100640108

    Metazoans have evolved multiple paralogues of the TATA binding protein (TBP), adding another tunable level of gene control at core promoters. While TBP-related factor 1 (TRF1) shares extensive homology with TBP and can direct both Pol II and Pol III transcription in vitro, TRF1 target sites in vivo have remained elusive. Here, we report the genome-wide identification of TRF1-binding sites using high-resolution genome tiling microarrays. We found 354 TRF1-binding sites genome-wide with approximately 78% of these sites displaying colocalization with BRF. Strikingly, the majority of TRF1 target genes are Pol III-dependent small noncoding RNAs such as tRNAs and small nonmessenger RNAs. We provide direct evidence that the TRF1/BRF complex is functionally required for the activity of two novel TRF1 targets (7SL RNA and small nucleolar RNAs). Our studies suggest that unlike most other eukaryotic organisms that rely on TBP for Pol III transcription, in Drosophila and possibly other insects the alternative TRF1/BRF complex appears responsible for the initiation of all known classes of Pol III transcription.

    View Publication Page
    Tjian Lab
    03/01/06 | Nutrient availability and growth: regulation of insulin signaling by dFOXO/FOXO1.
    Puig O, Tjian R
    Cell Cycle. 2006 Mar;5(5):503-5. doi: 10.1073/pnas.1100640108

    Organisms adjust their rate of growth depending on the availability of nutrients. Thus, when environmental conditions limit nutrients, growth is slowed and is only restored after food again becomes abundant. Many aspects of the molecular mechanisms that govern this complex control system remain unknown. However, it has been shown that the insulin/IGF-1 (insulin-like growth factor 1) receptor pathway, together with the FOXO family of transcription factors, play an important role in this process. Recent studies with the fruit fly Drosophila melanogaster have provided new insights into the regulatory circuitry that controls both growth and gene expression in response to nutrient availability.

    View Publication Page
    Tjian Lab
    12/15/04 | Polybromo protein BAF180 functions in mammalian cardiac chamber maturation.
    Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT, Kang C, Skarnes WC, Tjian R
    Genes & Development. 2004 Dec 15;18(24):3106-16. doi: 10.1073/pnas.1100640108

    BAF and PBAF are two related mammalian chromatin remodeling complexes essential for gene expression and development. PBAF, but not BAF, is able to potentiate transcriptional activation in vitro mediated by nuclear receptors, such as RXRalpha, VDR, and PPARgamma. Here we show that the ablation of PBAF-specific subunit BAF180 in mouse embryos results in severe hypoplastic ventricle development and trophoblast placental defects, similar to those found in mice lacking RXRalpha and PPARgamma. Embryonic aggregation analyses reveal that in contrast to PPARgamma-deficient mice, the heart defects are likely a direct result of BAF180 ablation, rather than an indirect consequence of trophoblast placental defects. We identified potential target genes for BAF180 in heart development, such as S100A13 as well as retinoic acid (RA)-induced targets RARbeta2 and CRABPII. Importantly, BAF180 is recruited to the promoter of these target genes and BAF180 deficiency affects the RA response for CRABPII and RARbeta2. These studies reveal unique functions of PBAF in cardiac chamber maturation.

    View Publication Page
    09/15/16 | Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis.
    Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG, Lavis LD, Revyakin A, Tjian R
    Genes and Development. 2016 Sep 15;30:2106-18. doi: 10.1101/gad.285395.116

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.

    View Publication Page
    08/03/16 | Real-time imaging of Huntingtin aggregates diverting target search and gene transcription.
    Li L, Liu H, Dong P, Li D, Legant WR, Grimm JB, Lavis LD, Betzig E, Tjian R, Liu Z
    eLife. 2016 Aug 03;5:. doi: 10.7554/eLife.17056

    The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells - 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells.

    View Publication Page
    Tjian Lab
    09/01/02 | Redundant role of tissue-selective TAF(II)105 in B lymphocytes.
    Freiman RN, Albright SR, Chu LE, Zheng S, Liang H, Sha WC, Tjian R
    Molecular and Cellular Biology. 2002 Sep;22(18):6564-72. doi: 10.1073/pnas.1100640108

    Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.

    View Publication Page
    Tjian Lab
    01/10/03 | Regulating the regulators: lysine modifications make their mark.
    Freiman RN, Tjian R
    Cell. 2003 Jan 10;112(1):11-7. doi: 10.1073/pnas.1100640108

    Decades of research have uncovered much of the molecular machinery responsible for establishing and maintaining proper gene transcription patterns in eukaryotes. Although the composition of this machinery is largely known, mechanisms regulating its activity by covalent modification are just coming into focus. Here, we review several cases of ubiquitination, sumoylation, and acetylation that link specific covalent modification of the transcriptional apparatus to their regulatory function. We propose that potential cascades of modifications serve as molecular rheostats that fine-tune the control of transcription in diverse organisms.

    View Publication Page
    Tjian Lab
    05/01/04 | Regulatory diversity among metazoan co-activator complexes.
    Taatjes DJ, Marr MT, Tjian R
    Nature Reviews. Molecular Cell Biology. 2004 May;5(5):403-10. doi: 10.1073/pnas.1100640108

    Transcription is a stepwise process that involves many specialized proteins and protein complexes, all of which must work together to express a given gene in a spatially and temporally regulated manner. An integral step in this regulatory process is carried out by large, multisubunit co-activator complexes, which have diverse roles in transcriptional control. Their diversity and large size allows for many potential regulatory inputs, but how is the versatility and specificity of these co-activator complexes determined?

    View Publication Page