Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

13 Publications

Showing 1-10 of 13 results
Your Criteria:
    03/19/08 | Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment.
    Kent A, Jha AK, Fitzgerald JE, Freed KF
    The journal of physical chemistry. B. 2008 May 15;112(19):6175-86. doi: 10.1021/jp077099h

    A pathogenetic feature of Alzhemier disease is the aggregation of monomeric beta-amyloid proteins (Abeta) to form oligomers. Usually these oligomers of long peptides aggregate on time scales of microseconds or longer, making computational studies using atomistic molecular dynamics models prohibitively expensive and making it essential to develop computational models that are cheaper and at the same time faithful to physical features of the process. We benchmark the ability of our implicit solvent model to describe equilibrium and dynamic properties of monomeric Abeta(10-35) using all-atom Langevin dynamics (LD) simulations, since Alphabeta(10-35) is the only fragment whose monomeric properties have been measured. The accuracy of the implicit solvent model is tested by comparing its predictions with experiment and with those from a new explicit water MD simulation, (performed using CHARMM and the TIP3P water model) which is approximately 200 times slower than the implicit water simulations. The dependence on force field is investigated by running multiple trajectories for Alphabeta(10-35) using the CHARMM, OPLS-aal, and GS-AMBER94 force fields, whereas the convergence to equilibrium is tested for each force field by beginning separate trajectories from the native NMR structure, a completely stretched structure, and from unfolded initial structures. The NMR order parameter, S2, is computed for each trajectory and is compared with experimental data to assess the best choice for treating aggregates of Alphabeta. The computed order parameters vary significantly with force field. Explicit and implicit solvent simulations using the CHARMM force fields display excellent agreement with each other and once again support the accuracy of the implicit solvent model. Alphabeta(10-35) exhibits great flexibility, consistent with experiment data for the monomer in solution, while maintaining a general strand-loop-strand motif with a solvent-exposed hydrophobic patch that is believed to be important for aggregation. Finally, equilibration of the peptide structure requires an implicit solvent LD simulation as long as 30 ns.

    View Publication Page
    07/12/12 | Estimation theoretic measure of resolution for stochastic localization microscopy.
    Fitzgerald JE, Lu J, Schnitzer MJ
    Physical review letters. 2012 Jul 27;109(4):048102. doi: 10.1103/PhysRevLett.109.048102

    One approach to super-resolution fluorescence microscopy, termed stochastic localization microscopy, relies on the nanometer scale spatial localization of individual fluorescent emitters that stochastically label specific features of the specimen. The precision of emitter localization is an important determinant of the resulting image resolution but is insufficient to specify how well the derived images capture the structure of the specimen. We address this deficiency by considering the inference of specimen structure based on the estimated emitter locations. By using estimation theory, we develop a measure of spatial resolution that jointly depends on the density of the emitter labels, the precision of emitter localization, and prior information regarding the spatial frequency content of the labeled object. The Nyquist criterion does not set the scaling of this measure with emitter number. Given prior information and a fixed emitter labeling density, our resolution measure asymptotes to a finite value as the precision of emitter localization improves. By considering the present experimental capabilities, this asymptotic behavior implies that further resolution improvements require increases in labeling density above typical current values. Our treatment also yields algorithms to enhance reliable image features. Overall, our formalism facilitates the rigorous statistical interpretation of the data produced by stochastic localization imaging techniques.

    View Publication Page
    01/05/14 | Flies and humans share a motion estimation strategy that exploits natural scene statistics.
    Clark DA, Fitzgerald JE, Ales JM, Gohl DM, Silies MA, Norcia AM, Clandinin TR
    Nature neuroscience. 2014 Feb;17(2):296-303. doi: 10.1038/nn.3600

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. We found that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extracted triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations was retained even as light and dark edge motion signals were combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This convergence argues that statistical structures in natural scenes have greatly affected visual processing, driving a common computational strategy over 500 million years of evolution.

    View Publication Page
    11/03/16 | From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.
    Naumann EA, Fitzgerald JE, Dunn TW, Rihel J, Sompolinsky H, Engert F
    Cell. 2016 11 03;167(4):947-960.e20. doi: 10.1016/j.cell.2016.10.019

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.

    View Publication Page
    06/15/15 | Impermanence of dendritic spines in live adult CA1 hippocampus.
    Attardo A, Fitzgerald JE, Schnitzer MJ
    Nature. 2015 Jul 30;523(7562):592-6. doi: 10.1038/nature14467

    The mammalian hippocampus is crucial for episodic memory formation and transiently retains information for about 3-4 weeks in adult mice and longer in humans. Although neuroscientists widely believe that neural synapses are elemental sites of information storage, there has been no direct evidence that hippocampal synapses persist for time intervals commensurate with the duration of hippocampal-dependent memory. Here we tested the prediction that the lifetimes of hippocampal synapses match the longevity of hippocampal memory. By using time-lapse two-photon microendoscopy in the CA1 hippocampal area of live mice, we monitored the turnover dynamics of the pyramidal neurons' basal dendritic spines, postsynaptic structures whose turnover dynamics are thought to reflect those of excitatory synaptic connections. Strikingly, CA1 spine turnover dynamics differed sharply from those seen previously in the neocortex. Mathematical modelling revealed that the data best matched kinetic models with a single population of spines with a mean lifetime of approximately 1-2 weeks. This implies ∼100% turnover in ∼2-3 times this interval, a near full erasure of the synaptic connectivity pattern. Although N-methyl-d-aspartate (NMDA) receptor blockade stabilizes spines in the neocortex, in CA1 it transiently increased the rate of spine loss and thus lowered spine density. These results reveal that adult neocortical and hippocampal pyramidal neurons have divergent patterns of spine regulation and quantitatively support the idea that the transience of hippocampal-dependent memory directly reflects the turnover dynamics of hippocampal synapses.

    View Publication Page
    10/25/18 | Long-Term Consolidation of Ensemble Neural Plasticity Patterns in Hippocampal Area CA1.
    Attardo A, Lu J, Kawashima T, Okuno H, Fitzgerald JE, Bito H, Schnitzer MJ
    Cell reports. 2018 Oct 16;25(3):640-650.e2. doi: 10.1016/j.celrep.2018.09.064

    Neural network remodeling underpins the ability to remember life experiences, but little is known about the long-term plasticity of neural populations. To study how the brain encodes episodic events, we used time-lapse two-photon microscopy and a fluorescent reporter of neural plasticity based on an enhanced form of the synaptic activity-responsive element (E-SARE) within the Arc promoter to track thousands of CA1 hippocampal pyramidal cells over weeks in mice that repeatedly encountered different environments. Each environment evokes characteristic patterns of ensemble neural plasticity, but with each encounter, the set of activated cells gradually evolves. After repeated exposures, the plasticity patterns evoked by an individual environment progressively stabilize. Compared with young adults, plasticity patterns in aged mice are less specific to individual environments and less stable across repeat experiences. Long-term consolidation of hippocampal plasticity patterns may support long-term memory formation, whereas weaker consolidation in aged subjects might reflect declining memory function.

    View Publication Page
    03/10/09 | Mimicking the folding pathway to improve homology-free protein structure prediction.
    DeBartolo J, Colubri A, Jha AK, Fitzgerald JE, Freed KF, Sosnick TR
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Mar 10;106(10):3734-9. doi: 10.1073/pnas.0811363106

    Since the demonstration that the sequence of a protein encodes its structure, the prediction of structure from sequence remains an outstanding problem that impacts numerous scientific disciplines, including many genome projects. By iteratively fixing secondary structure assignments of residues during Monte Carlo simulations of folding, our coarse-grained model without information concerning homology or explicit side chains can outperform current homology-based secondary structure prediction methods for many proteins. The computationally rapid algorithm using only single (phi,psi) dihedral angle moves also generates tertiary structures of accuracy comparable with existing all-atom methods for many small proteins, particularly those with low homology. Hence, given appropriate search strategies and scoring functions, reduced representations can be used for accurately predicting secondary structure and providing 3D structures, thereby increasing the size of proteins approachable by homology-free methods and the accuracy of template methods that depend on a high-quality input secondary structure.

    View Publication Page
    10/24/15 | Nonlinear circuits for naturalistic visual motion estimation.
    Fitzgerald JE, Clark DA
    eLife. 2015 Oct 24;4:e09123. doi: 10.7554/eLife.09123

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator.

    View Publication Page
    01/08/13 | Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing.
    Wilt BA, Fitzgerald JE, Schnitzer MJ
    Biophysical journal. 2013 Jan 08;104(1):51-62. doi: 10.1016/j.bpj.2012.07.058

    Optical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quantifying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends on the kinetics of the optical indicator and the relative fluxes of signal and background photons. This approach facilitates quantitative evaluations of different indicators, detector technologies, and data analyses. Our treatment also provides optimal filtering techniques for optical detection of spikes. We compare various types of Ca(2+) indicators and show that background photons are a chief impediment to voltage sensing. Thus, voltage indicators that change color in response to membrane depolarization may offer a key advantage over those that change intensity. We also examine fluorescence resonance energy transfer indicators and identify the regimes in which the widely used ratiometric analysis of signals is substantially suboptimal. Overall, by showing how different optical factors interact to affect signal quality, our treatment offers a valuable guide to experimental design and provides measures of confidence to assess optically extracted traces of neural activity.

    View Publication Page
    01/23/07 | Polypeptide motions are dominated by peptide group oscillations resulting from dihedral angle correlations between nearest neighbors.
    Fitzgerald JE, Jha AK, Sosnick TR, Freed KF
    Biochemistry. 2007 Jan 23;46(3):669-82. doi: 10.1021/bi061575x

    To identify basic local backbone motions in unfolded chains, simulations are performed for a variety of peptide systems using three popular force fields and for implicit and explicit solvent models. A dominant "crankshaft-like" motion is found that involves only a localized oscillation of the plane of the peptide group. This motion results in a strong anticorrelated motion of the phi angle of the ith residue (phi(i)) and the psi angle of the residue i - 1 (psi(i-1)) on the 0.1 ps time scale. Only a slight correlation is found between the motions of the two backbone dihedral angles of the same residue. Aside from the special cases of glycine and proline, no correlations are found between backbone dihedral angles that are separated by more than one torsion angle. These short time, correlated motions are found both in equilibrium fluctuations and during the transit process between Ramachandran basins, e.g., from the beta to the alpha region. A residue's complete transit from one Ramachandran basin to another, however, occurs in a manner independent of its neighbors' conformational transitions. These properties appear to be intrinsic because they are robust across different force fields, solvent models, nonbonded interaction routines, and most amino acids.

    View Publication Page