Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

38 Publications

Showing 21-30 of 38 results
Your Criteria:
    Baker Lab
    10/20/16 | Memory elicited by courtship conditioning requires mushroom body neuronal subsets similar to those utilized in appetitive memory.
    Montague SA, Baker BS
    PLoS One. 2016 Oct 20;11(10):e0164516. doi: 10.1371/journal.pone.0164516

    An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.

    View Publication Page
    Baker Lab
    01/01/10 | Midline crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex and the roundabout receptors.
    Mellert DJ, Knapp J, Manoli DS, Meissner GW, Baker BS
    Development. 2010 Jan;137(2):323-32. doi: 10.1242/dev.045047

    Although nervous system sexual dimorphisms are known in many species, relatively little is understood about the molecular mechanisms generating these dimorphisms. Recent findings in Drosophila provide the tools for dissecting how neurogenesis and neuronal differentiation are modulated by the Drosophila sex-determination regulatory genes to produce nervous system sexual dimorphisms. Here we report studies aimed at illuminating the basis of the sexual dimorphic axonal projection patterns of foreleg gustatory receptor neurons (GRNs): only in males do GRN axons project across the midline of the ventral nerve cord. We show that the sex determination genes fruitless (fru) and doublesex (dsx) both contribute to establishing this sexual dimorphism. Male-specific Fru (Fru(M)) acts in foreleg GRNs to promote midline crossing by their axons, whereas midline crossing is repressed in females by female-specific Dsx (Dsx(F)). In addition, midline crossing by these neurons might be promoted in males by male-specific Dsx (Dsx(M)). Finally, we (1) demonstrate that the roundabout (robo) paralogs also regulate midline crossing by these neurons, and (2) provide evidence that Fru(M) exerts its effect on midline crossing by directly or indirectly regulating Robo signaling.

    View Publication Page
    Baker Lab
    05/19/14 | Neural pathways for the detection and discrimination of conspecific song in D. melanogaster.
    Vaughan AG, Zhou C, Manoli DS, Baker BS
    Current Biology. 2014 May 19;24(10):1039-49. doi: 10.1016/j.cub.2014.03.048

    BACKGROUND: During courtship, male Drosophila melanogaster sing a multipart courtship song to female flies. This song is of particular interest because (1) it is species specific and varies widely within the genus, (2) it is a gating stimulus for females, who are sensitive detectors of conspecific song, and (3) it is the only sexual signal that is under both neural and genetic control. This song is perceived via mechanosensory neurons in the antennal Johnston's organ, which innervate the antennal mechanosensory and motor center (AMMC) of the brain. However, AMMC outputs that are responsible for detection and discrimination of conspecific courtship song remain unknown.

    RESULTS: Using a large-scale anatomical screen of AMMC interneurons, we identify seven projection neurons (aPNs) and five local interneurons (aLNs) that outline a complex architecture for the ascending mechanosensory pathway. Neuronal inactivation and hyperactivation during behavior reveal that only two classes of interneurons are necessary for song responses--the projection neuron aPN1 and GABAergic interneuron aLN(al). These neurons are necessary in both male and female flies. Physiological recordings in aPN1 reveal the integration of courtship song as a function of pulse rate and outline an intracellular transfer function that likely facilitates the response to conspecific song.

    CONCLUSIONS: These results reveal a critical pathway for courtship hearing in male and female flies, in which both aLN(al) and aPN1 mediate the detection of conspecific song. The pathways arising from these neurons likely serve as a critical neural substrate for behavioral reproductive isolation in D. melanogaster.

    View Publication Page
    Baker Lab
    02/01/80 | On the action of major loci affecting sex determination in Drosophila melanogaster.
    Baker B, Ridge K
    Genetics. 1980 Feb;94(2):383-423

    Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra(+) and tra-2(+) cease being needed shortly before the termination of cell division in the abdomen, whereas dsx(+) is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra(+) and tra-2(+) have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx(+) is required in the foreleg at least until pupariation.--A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.-All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.-The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.

    View Publication Page
    Baker Lab
    05/01/10 | Sex and the single cell. II. There is a time and place for sex.
    Robinett CC, Vaughan AG, Knapp J, Baker BS
    PLoS Biology. 2010 May;8(5):e1000365. doi: 10.1371/journal.pbio.1000365

    The Drosophila melanogaster sex hierarchy controls sexual differentiation of somatic cells via the activities of the terminal genes in the hierarchy, doublesex (dsx) and fruitless (fru). We have targeted an insertion of GAL4 into the dsx gene, allowing us to visualize dsx-expressing cells in both sexes. Developmentally and as adults, we find that both XX and XY individuals are fine mosaics of cells and tissues that express dsx and/or fruitless (fru(M)), and hence have the potential to sexually differentiate, and those that don’t. Evolutionary considerations suggest such a mosaic expression of sexuality is likely to be a property of other animal species having two sexes. These results have also led to a major revision of our view of how sex-specific functions are regulated by the sex hierarchy in flies. Rather than there being a single regulatory event that governs the activities of all downstream sex determination regulatory genes-turning on Sex lethal (Sxl) RNA splicing activity in females while leaving it turned off in males-there are, in addition, elaborate temporal and spatial transcriptional controls on the expression of the terminal regulatory genes, dsx and fru. Thus tissue-specific aspects of sexual development are jointly specified by post-transcriptional control by Sxl and by the transcriptional controls of dsx and fru expression.

    View Publication Page
    Baker Lab
    12/01/83 | Sex determination and dosage compensation in melanogaster.
    Baker B, Belote J
    Annual Review of Genetics. 1983 Dec;17:345-93
    Baker Lab
    03/01/82 | Sex determination in Drosophila melanogaster: analysis of transformer-2 , a sex-transforming locus.
    Baker B, Belote J
    Proceedings of the National Academy of Sciences of the United States of America. 1982 Mar;79(5):1568-72

    The transformer-2 (tra-2) locus is one of a set of regulatory loci that control sex determination in Drosophila melanogaster. Temperature-shift experiments with temperature-sensitive tra-2 mutants demonstrate that within single cell lineages tra-2+ function is required at several times, and probably continuously, during development for the occurrence of a series of determinative decisions necessary for female sexual differentiation. Analysis of the effects of tra-2 in the genital disc demonstrates that the tra-2+ function is necessary in females both to prevent male sexual differentiation and to permit female differentiation. These and other results support the model that the tra-2+ and tra+ loci act to control the expression of the bifunctional doublesex (dsx) locus.

    View Publication Page
    Baker Lab
    11/01/93 | Sex-lethal, master and slave: the hierarchy of germline sex determination in Drosophila.
    Baker B, Oliver B, Kim YJ
    Development. 1993 Nov;119(3):897-908

    Female sex determination in the germ line of Drosophila melanogaster is regulated by genes functioning in the soma as well as genes that function within the germ line. Genes known or suspected to be involved in germ-line sex determination in Drosophila melanogaster have been examined to determine if they are required upstream or downstream of Sex-lethal+, a known germ-line sex determination gene. Seven genes required for female-specific splicing of germ-line Sex-lethal+ pre-mRNA are identified. These results together with information about the tissues in which these genes function and whether they control sex determination and viability or just sex determination in the germ line have been used to deduce the genetic hierarchy regulating female germ-line sex determination. This hierarchy includes the somatic sex determination genes transformer+, transformer-2+ and doublesex+ (and by inference Sex-lethal+), which control a somatic signal required for female germ-line sex determination, and the germ-line ovarian tumor genes fused+, ovarian tumor+, ovo+, sans fille+, and Sex-lethal+, which are involved in either the reception or interpretation of this somatic sex determination signal. The fused+, ovarian tumor+, ovo+ and sans fille+ genes function upstream of Sex-lethal+ in the germ line.

    View Publication Page
    Baker Lab
    02/16/16 | Sex-specific regulation of Lgr3 in Drosophila neurons.
    Meissner GW, Luo SD, Dias BG, Texada MJ, Baker BS
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Feb 18:. doi: 10.1073/pnas.1600241113

    The development of sexually dimorphic morphology and the potential for sexually dimorphic behavior in Drosophila are regulated by the Fruitless (Fru) and Doublesex (Dsx) transcription factors. Several direct targets of Dsx have been identified, but direct Fru targets have not been definitively identified. We show that Drosophila leucine-rich repeat G protein-coupled receptor 3 (Lgr3) is regulated by Fru and Dsx in separate populations of neurons. Lgr3 is a member of the relaxin-receptor family and a receptor for Dilp8, necessary for control of organ growth. Lgr3 expression in the anterior central brain of males is inhibited by the B isoform of Fru, whose DNA binding domain interacts with a short region of an Lgr3 intron. Fru A and C isoform mutants had no observed effect on Lgr3 expression. The female form of Dsx (Dsx(F)) separately up- and down-regulates Lgr3 expression in distinct neurons in the abdominal ganglion through female- and male-specific Lgr3 enhancers. Excitation of neural activity in the Dsx(F)-up-regulated abdominal ganglion neurons inhibits female receptivity, indicating the importance of these neurons for sexual behavior. Coordinated regulation of Lgr3 by Fru and Dsx marks a point of convergence of the two branches of the sex-determination hierarchy.

    View Publication Page
    Baker Lab
    02/01/85 | Sex-specific regulation of yolk protein gene expression in Drosophila.
    Baker B, Belote J, Handler A, Wolfner M, Livak K
    Cell. 1985 Feb;40(2):339-48

    Many of the genes in the regulatory hierarchy controlling sex determination in Drosophila melanogaster are known. Here we examine how this regulatory hierarchy controls the expression of the structural genes encoding the female-specific yolk polypeptides. Temperature shift experiments with a temperature-sensitive allele of the sex determination regulatory gene transformer-2 (tra-2) showed that tra-2+ function is required in the adult for both the sex-specific initiation and maintenance of YP synthesis. Control of the YP genes by this regulatory hierarchy is at the level of transcription, or transcript stability. The results of temperature shift experiments with abdomens isolated from tra-2ts homozygotes support the notion that the tra-2+ function acts in a cell-autonomous manner to control YP synthesis. These results provide a paradigm for the way this regulatory hierarchy controls the terminal differentiation functions for sexually dimorphic development.

    View Publication Page