Filter
Associated Lab
- Remove Saalfeld Lab filter Saalfeld Lab
Publication Date
Type of Publication
- Remove Janelia filter Janelia
4 Publications
Showing 1-4 of 4 resultsNatural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneity from data alone. The learned latent structure and dynamics can be used to virtually decompose the complex system which is necessary to parameterize and infer the underlying governing equations. We tested the approach with simulation experiments of moving particles and vector fields that interact with each other. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.
The point spread function (PSF) is fundamental to any type of microscopy, most importantly so for single-molecule localization techniques, where the exact PSF shape is crucial for precise molecule localization at the nanoscale. Optical aberrations and fixed fluorophore dipoles often result in non-isotropic and distorted PSFs, impairing and biasing conventional fitting approaches. Further, PSF shapes are deliberately modified in PSF engineering approaches for providing improved sensitivity, e.g., for 3D localization or determination of dipole orientation. As this can lead to highly complex PSF shapes, a tool for visualizing expected PSFs would facilitate the interpretation of obtained data and the design of experimental approaches. To this end, we introduce a comprehensive and accessible computer application that allows for the simulation of realistic PSFs based on the full vectorial PSF model. Our tool incorporates a wide range of microscope and fluorophore parameters, including orientationally constrained fluorophores, as well as custom aberrations, transmission and phase masks, thus enabling an accurate representation of various imaging conditions. An additional feature is the simulation of crowded molecular environments with overlapping PSFs. Further, our app directly provides the Cramér–Rao bound for assessing the best achievable localization precision under given conditions. Finally, our software allows for the fitting of custom aberrations directly from experimental data, as well as the generation of a large dataset with randomized simulation parameters, effectively bridging the gap between simulated and experimental scenarios, and enhancing experimental design and result validation.
The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.
Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many “bridge” layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits. The SciJava Ops library presented here addresses this need through two novel principles. Algorithm implementations are declared as plugins called Ops, providing a uniform interface regardless of the toolkit they came from. Users express their needs declaratively to the Op environment, which can then find and adapt available Ops on demand. By using these principles instead of direct function calls, users can write streamlined workflows while avoiding the translation boilerplate of bridge layers. Developers can easily extend SciJava Ops to introduce new libraries and more efficient, specialized algorithm implementations, even immediately benefitting existing workflows. We provide several use cases showing both user and developer benefits, as well as benchmarking data to quantify the negligible impact on overall analysis performance. We have initially deployed SciJava Ops on the Fiji platform, however it would be suitable for integration with additional analysis platforms in the future.