Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4074 Publications

Showing 711-720 of 4074 results
02/17/16 | Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy.
Quirin S, Vladimirov N, Yang C, Peterka DS, Yuste R, Ahrens MB
Optics Letters. 2016 Feb 17;41(5):855-8. doi: 10.1364/OL.41.000855

Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416×832×160  μm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain.

View Publication Page
04/01/12 | Calcium signaling in dendritic spines.
Higley MJ, Sabatini BL
Cold Spring Harb Perspect Biol. 2012 Apr 01;4(4):a005686. doi: 10.1101/cshperspect.a005686

Calcium (Ca(2+)) is a ubiquitous signaling molecule that accumulates in the cytoplasm in response to diverse classes of stimuli and, in turn, regulates many aspects of cell function. In neurons, Ca(2+) influx in response to action potentials or synaptic stimulation triggers neurotransmitter release, modulates ion channels, induces synaptic plasticity, and activates transcription. In this article, we discuss the factors that regulate Ca(2+) signaling in mammalian neurons with a particular focus on Ca(2+) signaling within dendritic spines. This includes consideration of the routes of entry and exit of Ca(2+), the cellular mechanisms that establish the temporal and spatial profile of Ca(2+) signaling, and the biophysical criteria that determine which downstream signals are activated when Ca(2+) accumulates in a spine. Furthermore, we also briefly discuss the technical advances that made possible the quantitative study of Ca(2+) signaling in dendritic spines.

View Publication Page
01/24/17 | Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells
Lynn Carr , Sylvia M. Bardet , Ryan C. Burke , Delia Arnaud-Cormos , Philippe Leveque , Rodney P. O’Connor

High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.

View Publication Page
11/12/08 | Calcium-sensing receptor activation depresses synaptic transmission.
Phillips CG, Harnett MT, Chen W, Smith SM
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Nov 12;28(46):12062-70. doi: 10.1523/JNEUROSCI.4134-08.2008

At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca](o)) and thus may impair neurotransmission. Increases in [Ca](o) activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits nonselective cation channels at the majority of cortical nerve terminals. This pathway may modulate synaptic transmission by attenuating the impact of decreases in [Ca](o) on synaptic transmission. Using patch-clamp recording from isolated cortical terminals, cortical neuronal pairs and isolated neuronal soma we examined the modulation of synaptic transmission by CaSR. EPSCs were increased on average by 88% in reduced affinity CaSR-mutant (CaSR(-/-)) neurons compared with wild-type. Variance-mean analysis indicates that the enhanced synaptic transmission was due largely to an increase in average probability of release (0.27 vs 0.46 for wild-type vs CaSR(-/-) pairs) with little change in quantal size (23 +/- 4 pA vs 22 +/- 4 pA) or number of release sites (11 vs 13). In addition, the CaSR agonist spermidine reduced synaptic transmission and increased paired-pulse depression at physiological [Ca](o). Spermidine did not affect quantal size, consistent with a presynaptic mechanism of action, nor did it affect voltage-activated Ca channel currents. In summary, reduced CaSR function enhanced synaptic transmission and CaSR stimulation had the opposite effect. Thus CaSR provides a mechanism that may compensate for the fall in release probability that accompanies decreases in [Ca](o).

View Publication Page
10/01/09 | Calcium-sensing receptor: a high-affinity presynaptic target for aminoglycoside-induced weakness.
Harnett MT, Chen W, Smith SM
Neuropharmacology. 2009 Oct-Nov;57(5-6):502-5. doi: 10.1016/j.neuropharm.2009.07.031

Administration of aminoglycoside antibiotics can precipitate sudden, profound bouts of weakness that have been attributed to block of presynaptic voltage-activated calcium channels (VACCs) and failure of neuromuscular transmission. This serious adverse drug reaction is more likely in neuromuscular diseases such as myasthenia gravis. The relatively low affinity of VACC for aminoglycosides prompted us to explore alternative mechanisms. We hypothesized that the presynaptic Ca(2+)-sensing receptor (CaSR) may contribute to aminoglycoside-induced weakness due to its role in modulating synaptic transmission and its sensitivity to aminoglycosides in heterologous expression systems. We have previously shown that presynaptic CaSR controls a non-selective cation channel (NSCC) that regulates nerve terminal excitability and transmitter release. Using direct, electrophysiological recording, we report that neuronal VACCs are inhibited by neomycin (IC(50) 830 +/- 110 microM) at a much lower affinity than CaSR-modulated NSCC currents recorded from acutely isolated presynaptic terminals (synaptosomes; IC(50) 20 +/- 1 microM). Thus, at clinically relevant concentrations, aminoglycoside-induced weakness is likely precipitated by enhanced CaSR activation and subsequent decrease in terminal excitability rather than through direct inhibition of VACCs themselves.

View Publication Page
03/27/03 | Calculating free energies for diffusion in tight-fitting zeolite-guest systems: Local normal-mode Monte Carlo
Srinivas C. Turaga , Scott M. Auerbach
Journal of Chemical Physics. 2003;118(6512):. doi: 10.1063/1.1558033

We present an efficient Monte Carlo algorithm for simulating diffusion in tight-fitting host–guest systems, based on using zeolitenormal modes. Computational efficiency is gained by sampling framework distortions using normal-mode coordinates, and by exploiting the fact that zeolite distortion energies are well approximated by harmonic estimates. Additional savings are obtained by performing local normal-mode analysis, i.e., only including the motions of zeolite atoms close to the jumping molecule, hence focusing the calculation on zeolite distortions relevant to guest diffusion. We performed normal-mode analysis on various silicalite structures to demonstrate the accuracy of the harmonic approximation. We computed free energy surfaces for benzene in silicalite, finding excellent agreement with previous theoretical studies. Our method is found to be orders-of-magnitude faster than comparable Monte Carlo calculations that use conventional forcefields to quantify zeolite distortion energies. For tight-fitting guests, the efficiency of our new method allows flexible-lattice simulations to converge in less CPU time than that required for fixed-lattice simulations, because of the increased likelihood of jumping through a flexible lattice.

View Publication Page
06/05/18 | CalmAn: An open source tool for scalable Calcium Imaging data Analysis
Giovannucci A, Friedrich J, Gunn P, Kalfon J, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P, Tank DW, Chklovskii D, Pnevmatikakis EA
bioRxiv. 06/2018:. doi: 10.1101/339564

Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. Here we present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good performance on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected a corpus of ground truth annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.

View Publication Page
03/18/20 | CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila.
Chen H, Marques JG, Sugino K, Wei D, Miyares RL, Lee T
Nucleic Acids Research. 2020 Mar 18:. doi: 10.1093/nar/gkaa177

The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1-2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5'UTR sequences crucial for chinmo's post-transcriptional regulation.

View Publication Page
08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
mBio. 2021 Aug 24:e0149421. doi: 10.1128/mBio.01494-21

Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

View Publication Page
08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
mBio. 2021 Aug 24;12(4):e0149421. doi: 10.1128/mBio.01494-21

Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

View Publication Page