Filter
Associated Lab
- 43430 (2) Apply 43430 filter
- Heberlein Lab (1) Apply Heberlein Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Pastalkova Lab (1) Apply Pastalkova Lab filter
- Riddiford Lab (1) Apply Riddiford Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Spruston Lab (3) Apply Spruston Lab filter
- Stern Lab (2) Apply Stern Lab filter
- Truman Lab (1) Apply Truman Lab filter
Publication Date
- December 1999 (1) Apply December 1999 filter
- October 1999 (1) Apply October 1999 filter
- September 1999 (3) Apply September 1999 filter
- August 1999 (1) Apply August 1999 filter
- June 1999 (1) Apply June 1999 filter
- April 1999 (1) Apply April 1999 filter
- March 1999 (2) Apply March 1999 filter
- February 1999 (2) Apply February 1999 filter
- January 1999 (2) Apply January 1999 filter
- Remove 1999 filter 1999
Type of Publication
14 Publications
Showing 11-14 of 14 resultsSodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.
Transcriptional regulation is a complex process that requires cooperation between specific DNA sequence elements, the DNA-binding proteins that bind to these sequences, the general transcriptional machinery, and chromatin. Oocyte microinjection offers a technique to study the integrated transcription process while still providing the opportunity to experimentally perturb this process. We describe here techniques for manipulating DNA templates and the protein complement of the oocyte to study multiple facets of transcriptional regulation. We present sample results showing that the GAL4-VP16 fusion activator is sensitive to distance in constructs containing only a minimal promoter, but can activate transcription at greater distances when proximal promoter elements are present.
A model of acute carbon monoxide poisoning combined with spreading depression (SD) induced metabolic stress was used to examine the protective effects of cerebrolysin (CL) on the development of electrophysiological, behavioral and morphological signs of hypoxic damage. Capillary electrodes were implanted into the neocortex and hippocampus of anesthetized rats which were then exposed for 90 min to breathing of 0.8% to 0.5% CO, while 3 to 4 waves of cortical and hippocampal SD were elicited by microinjections of 5% KCl. Duration of SD-provoked depolarization of cerebral cortex and hippocampus was noted. Nine and 18 to 19 days later propagation of SD waves was recorded with the same electrodes and decrease of their amplitude was used as an index of brain damage which was significant in the hippocampus but not in the cortex. CL-treatment (2.5 ml/kg per day) started after CO administration and continued for 14 days significantly improved hippocampal recovery manifested by increased amplitude of SD waves. Behavioral tests performed 10 and 20 days after CO poisoning in the Morris water maze revealed better performance (escape latency 7 s) in the CL-treated than in untreated animals (14 s). Morphological analysis showed marked damage in the hippocampus consonant with electrophysiological and behavioral findings in the same animals. No apparent histological damage was found in rats exposed to CO inhalation alone without the additional SD-provoked depolarization. It is concluded that chronic CL-treatment enhances recovery of hippocampal tissue after hypoxic damage of intermediate severity.