Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    Kainmueller Lab
    07/20/09 | Multi-object segmentation of head bones.
    Kainmueller D, Lamecker H, Seim H, Zachow S
    MIDAS Journal. 2009 Jul 20:

    We present a fully automatic method for 3D segmentation of the mandibular bone from CT data. The method includes an adaptation of statistical shape models of the mandible, the skull base and the midfacial bones, followed by a simultaneous graph-based optimization of adjacent deformable models. The adaptation of the models to the image data is performed according to a heuristic model of the typical intensity distribution in the vincinity of the bone boundary, with special focus on an accurate discrimination of adjacent bones in joint regions. An evaluation of our method based on 18 CT scans shows that a manual correction of the automatic segmentations is not necessary in approx. 60% of the axial slices that contain the mandible.

    View Publication Page
    07/20/09 | Simplified approach to diffraction tomography in optical microscopy.
    Fiolka R, Wicker K, Heintzmann R, Stemmer A
    Optics Express. 2009 Jul 20;17(15):12407-17

    We present a novel microscopy technique to measure the scattered wavefront emitted from an optically transparent microscopic object. The complex amplitude is decoded via phase stepping in a common-path interferometer, enabling high mechanical stability. We demonstrate theoretically and practically that the incoherent summation of multiple illumination directions into a single image increases the resolving power and facilitates image reconstruction in diffraction tomography. We propose a slice-by-slice object-scatter extraction algorithm entirely based in real space in combination with ordinary z-stepping. Thereby the computational complexity affiliated with tomographic methods is significantly reduced. Using the first order Born approximation for weakly scattering objects it is possible to obtain estimates of the scattering density from the exitwaves.

    View Publication Page