Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

14 Publications

Showing 1-10 of 14 results
Your Criteria:
    Kainmueller Lab
    08/28/09 | Comparison and evaluation of methods for liver segmentation from CT datasets.
    Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer H, Nemeth G, Raicu DS, Rau A, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I
    IEEE transactions on medical imaging. 2009 Aug;28(8):1251-65. doi: 10.1109/TMI.2009.2013851

    This paper presents a comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images. It is based on results from the "MICCAI 2007 Grand Challenge" workshop, where 16 teams evaluated their algorithms on a common database. A collection of 20 clinical images with reference segmentations was provided to train and tune algorithms in advance. Participants were also allowed to use additional proprietary training data for that purpose. All teams then had to apply their methods to 10 test datasets and submit the obtained results. Employed algorithms include statistical shape models, atlas registration, level-sets, graph-cuts and rule-based systems. All results were compared to reference segmentations five error measures that highlight different aspects of segmentation accuracy. All measures were combined according to a specific scoring system relating the obtained values to human expert variability. In general, interactive methods reached higher average scores than automatic approaches and featured a better consistency of segmentation quality. However, the best automatic methods (mainly based on statistical shape models with some additional free deformation) could compete well on the majority of test images. The study provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

    View Publication Page
    08/25/09 | Olfactory information processing in Drosophila.
    Masse NY, Turner GC, Jeffers GS
    Current Biology : CB. 2009 Aug 25;19(16):R700-13. doi: 10.1016/j.cub.2009.06.026

    In both insect and vertebrate olfactory systems only two synapses separate the sensory periphery from brain areas required for memory formation and the organisation of behaviour. In the Drosophila olfactory system, which is anatomically very similar to its vertebrate counterpart, there has been substantial recent progress in understanding the flow of information from experiments using molecular genetic, electrophysiological and optical imaging techniques. In this review, we shall focus on how olfactory information is processed and transformed in order to extract behaviourally relevant information. We follow the progress from olfactory receptor neurons, through the first processing area, the antennal lobe, to higher olfactory centres. We address both the underlying anatomy and mechanisms that govern the transformation of neural activity. We emphasise our emerging understanding of how different elementary computations, including signal averaging, gain control, decorrelation and integration, may be mapped onto different circuit elements.

    View Publication Page
    08/21/09 | A divergent approach to the synthesis of 3-substituted-2-pyrazolines: Suzuki cross-coupling of 3-sulfonyloxy-2-pyrazolines.
    Grimm JB, Wilson KJ, Witter DJ
    The Journal of Organic Chemistry. 2009 Aug 21;74(16):6390-3. doi: 10.1021/jo9011859

    The efficient Suzuki cross-coupling of pyrazoline nonaflates with organoboron reagents was achieved to afford diverse 3-substituted-2-pyrazolines in excellent yield. The nonaflates displayed improved reactivity over the corresponding triflates and smoothly coupled to a variety of aryl- and heteroarylboronic acids. This process and its broad scope constitute a rapid, divergent strategy for the synthesis of elaborated 2-pyrazolines that are not readily obtained via conventional methods.

    View Publication Page
    Pavlopoulos Lab
    08/18/09 | Knockdown of parhyale ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology.
    Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Aug 18;106:13892-6. doi: 10.1073/pnas.0903105106

    Crustaceans possess remarkably diverse appendages, both between segments of a single individual as well as between species. Previous studies in a wide range of crustaceans have demonstrated a correlation between the anterior expression boundary of the homeotic (Hox) gene Ultrabithorax (Ubx) and the location and number of specialized thoracic feeding appendages, called maxillipeds. Given that Hox genes regulate regional identity in organisms as diverse as mice and flies, these observations in crustaceans led to the hypothesis that Ubx expression regulates the number of maxillipeds and that evolutionary changes in Ubx expression have generated various aspects of crustacean appendage diversity. Specifically, evolutionary changes in the expression boundary of Ubx have resulted in crustacean species with either 0, 1, 2, or 3 pairs of thoracic maxillipeds. Here we test this hypothesis by altering the expression of Ubx in Parhyale hawaiensis, a crustacean that normally possesses a single pair of maxillipeds. By reducing Ubx expression, we can generate Parhyale with additional maxillipeds in a pattern reminiscent of that seen in other crustacean species, and these morphological alterations are maintained as the animals molt and mature. These results provide critical evidence supporting the proposition that changes in Ubx expression have played a role in generating crustacean appendage diversity and lend general insights into the mechanisms of morphological evolution.

    View Publication Page
    Pavlopoulos Lab
    08/18/09 | Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean.
    Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Aug 18;106(33):13897-902. doi: 10.1073/pnas.0902804106

    Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.

    View Publication Page
    08/15/09 | Correlated mutation analyses on super-family alignments reveal functionally important residues.
    Kuipers RK, Joosten H, Verwiel E, Paans S, Akerboom J, van der Oost J, Leferink NG, van Berkel WJ, Vriend G, Schaap PJ
    Proteins. 2009 Aug 15;76(3):608-16. doi: 10.1002/prot.22374

    Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA-based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These criteria are best met in structure-based sequence alignments of large super-families. So far, CMA-techniques have mainly been employed to study the receptor interactions. The present work shows how a novel CMA tool, called Comulator, can be used to determine networks of functionally related residues in enzymes. These analyses provide leads for protein engineering studies that are directed towards modification of enzyme specificity or activity. As proof of concept, Comulator has been applied to four enzyme super-families: the isocitrate lyase/phoshoenol-pyruvate mutase super-family, the hexokinase super-family, the RmlC-like cupin super-family, and the FAD-linked oxidases super-family. In each of those cases networks of functionally related residue positions were discovered that upon mutation influenced enzyme specificity and/or activity as predicted. We conclude that CMA is a powerful tool for redesigning enzyme activity and selectivity.

    View Publication Page
    08/13/09 | Too fat to fly? New brain circuits regulate obesity in Drosophila.
    Kaun KR, Heberlein U
    Neuron. 2009 Aug 13;63(3):279-81. doi: 10.1016/j.neuron.2009.07.023

    In mammals, fat store levels are regulated by brain centers that control food intake and metabolism. A new study by Al-Anzi and colleagues in this issue of Neuron identifies neurons with similar functions in Drosophila, further establishing the fly as a legitimate model to study obesity.

    View Publication Page
    Kainmueller Lab
    08/07/09 | Automatic Extraction of Anatomical Landmarks From Medical Image Data: An Evaluation of Different Methods
    Kainmueller D, Hans-Christian Hege , Heiko Seim , Markus Heller , Stefan Zachow

    This work presents three different methods for automatic detection of anatomical landmarks in CT data, namely for the left and right anterior superior iliac spines and the pubic symphysis. The methods exhibit different degrees of generality in terms of portability to other anatomical landmarks and require a different amount of training data. The ſrst method is problem-speciſc and is based on the convex hull of the pelvis. Method two is a more generic approach based on a statistical shape model including the landmarks of interest for every training shape. With our third method we present the most generic approach, where only a small set of training landmarks is required. Those landmarks are transferred to the patient speciſc geometry based on Mean Value Coordinates (MVCs). The methods work on surfaces of the pelvis that need to be extracted beforehand. We perform this geometry reconstruction with our previously introduced fully automatic segmentation framework for the pelvic bones. With a focus on the accuracy of our novel MVC-based approach, we evaluate and compare our methods on 100 clinical CT datasets, for which gold standard landmarks were deſned manually by multiple observers.

    View Publication Page
    08/04/09 | Rapid evolution of sex pheromone-producing enzyme expression in Drosophila.
    Shirangi TR, Dufour HD, Williams TM, Carroll SB
    PLoS Biology. 2009 Aug 4;7(8):e1000168. doi: 10.1371/journal.pbio.1000168

    A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila.

    View Publication Page
    08/01/09 | A Drosophila resource of transgenic RNAi lines for neurogenetics.
    Ni J, Liu L, Binari R, Hardy R, Shim H, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H, Villalta C, Laverty TR, Perkins LA, Perrimon N
    Genetics. 2009 Aug;182(4):1089-100. doi: 10.1534/genetics.109.103630

    Conditional expression of hairpin constructs in Drosophila is a powerful method to disrupt the activity of single genes with a spatial and temporal resolution that is impossible, or exceedingly difficult, using classical genetic methods. We previously described a method (Ni et al. 2008) whereby RNAi constructs are targeted into the genome by the phiC31-mediated integration approach using Vermilion-AttB-Loxp-Intron-UAS-MCS (VALIUM), a vector that contains vermilion as a selectable marker, an attB sequence to allow for phiC31-targeted integration at genomic attP landing sites, two pentamers of UAS, the hsp70 core promoter, a multiple cloning site, and two introns. As the level of gene activity knockdown associated with transgenic RNAi depends on the level of expression of the hairpin constructs, we generated a number of derivatives of our initial vector, called the "VALIUM" series, to improve the efficiency of the method. Here, we report the results from the systematic analysis of these derivatives and characterize VALIUM10 as the most optimal vector of this series. A critical feature of VALIUM10 is the presence of gypsy insulator sequences that boost dramatically the level of knockdown. We document the efficacy of VALIUM as a vector to analyze the phenotype of genes expressed in the nervous system and have generated a library of 2282 constructs targeting 2043 genes that will be particularly useful for studies of the nervous system as they target, in particular, transcription factors, ion channels, and transporters.

    View Publication Page