Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

192 Publications

Showing 101-110 of 192 results
Your Criteria:
    07/03/22 | Multifunctional fluorophores for live-cell imaging and affinity capture of proteins
    Kumar P, Jason D. Vevea , Edwin R. Chapman , Luke D. Lavis
    bioRxiv. 2022 Jul 03:. doi: 10.1101/2022.07.02.498544

    The development of enzyme-based self-labeling tags allow the labeling of proteins in living cells with synthetic small-molecules. Use of a fluorophore-containing ligand enables the visualization of protein location inside cells using fluorescence microscopy. Alternatively, deployment of a biotin-containing ligand allows purification of tagged protein using affinity resins. Despite these various applications of self-labeling tags, most ligands serve a single purpose. Here, we describe self-labeling tag ligands that allow both visualization and subsequent capture of a protein. A key design principle is exploiting the chemical properties and size of a rhodamine fluorophore to optimize cell-permeability of the ligand and the capture efficiency of the biotin conjugate. This work generates useful “multifunctional” fluorophores with generalizable design principles that will allow the construction of new tools for biology.

    View Publication Page
    07/01/22 | Kinetic principles underlying pioneer function of GAGA transcription factor in live cells.
    Tang X, Li T, Liu S, Wisniewski J, Zheng Q, Rong Y, Lavis LD, Wu C
    Nature Structural and Molecular Biology. 2022 Jul 01;29(7):665-676. doi: 10.1038/s41594-022-00800-z

    How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.

    View Publication Page
    Looger Lab
    07/01/22 | Many dissimilar protein domains switch between α-helix and β-sheet folds
    Lauren L. Porter , Allen K. Kim , Swechha Rimal , Loren L. Looger , Ananya Majumdar , Brett D. Mensh , Mary Starich
    Nature Communications. 2022 Jul01;13(1):. doi: 10.1101/2021.06.10.447921

    Hundreds of millions of structured proteins sustain life through chemical interactions and catalytic reactions1. Though dynamic, these proteins are assumed to be built upon fixed scaffolds of secondary structure, α-helices and β-sheets. Experimentally determined structures of over >58,000 non-redundant proteins support this assumption, though it has recently been challenged by ∼100 fold-switching proteins2. These “metamorphic3” proteins, though ostensibly rare, raise the question of how many uncharacterized proteins have shapeshifting–rather than fixed–secondary structures. To address this question, we developed a comparative sequence-based approach that predicts fold-switching proteins from differences in secondary structure propensity. We applied this approach to the universally conserved NusG transcription factor family of ∼15,000 proteins, one of which has a 50-residue regulatory subunit experimentally shown to switch between α-helical and β-sheet folds4. Our approach predicted that 25% of the sequences in this family undergo similar α-helix ⇌ β-sheet transitions, a frequency two orders of magnitude larger than previously observed. Our predictions evade state-of-the-art computational methods but were confirmed experimentally by circular dichroism and nuclear magnetic resonance spectroscopy for all 10 assiduously chosen dissimilar variants. These results suggest that fold switching is a pervasive mechanism of transcriptional regulation in all kingdoms of life and imply that numerous uncharacterized proteins may also switch folds.

    View Publication Page
    07/01/22 | Partial resistance to citalopram in a Wistar-Kyoto rat model of depression: An evaluation using resting-state functional MRI and graph analysis.
    Li Q, Zhao W, Liu S, Zhao Y, Pan W, Wang X, Liu Z, Xu Y
    Journal of Psychiatric Research. 2022 Jul 01;151:242-251. doi: 10.1016/j.jpsychires.2022.04.010

    Wistar-Kyoto (WKY) rats as an endogenous depression model partially lack a response to classic selective serotonin reuptake inhibitors (SSRIs). Thus, this strain has the potential to be established as a model of treatment-resistant depression (TRD). However, the SSRI resistance in WKY rats is still not fully understood. In this study, WKY and control rats were subjected to a series of tests, namely, a forced swim test (FST), a sucrose preference test (SPT), and an open field test (OFT), and were scanned in a 7.0-T MRI scanner before and after three-week citalopram or saline administration. Behavioral results demonstrated that WKY rats had increased immobility in the FST and decreased sucrose preference in the SPT and central time spent in the OFT. However, citalopram did not improve immobility in the FST. The amplitude of low-frequency fluctuation (ALFF) analysis showed regional changes in the striatum and hippocampus of WKY rats. However, citalopram partially reversed the ALFF value in the dorsal part of the two regions. Functional connectivity (FC) analysis showed that FC strengths were decreased in WKY rats compared with controls. Nevertheless, citalopram partially increased FC strengths in WKY rats. Based on FC, global graph analysis demonstrated decreased network efficiency in WKY + saline group compared with control + saline group, but citalopram showed weak network efficiency improvement. In conclusion, resting-state fMRI results implied widely affected brain function at both regional and global levels in WKY rats. Citalopram had only partial effects on these functional changes, indicating a potential treatment resistance mechanism.

    View Publication Page
    07/01/22 | The PV2 cluster of parvalbumin neurons in the murine periaqueductal gray: connections and gene expression.
    Leemann S, Babalian A, Girard F, Davis F, Celio MR
    Brain Structure and Function. 2022 Jul 01;227(6):2049-72. doi: 10.1007/s00429-022-02491-0

    The PV2 (Celio 1990), a cluster of parvalbumin-positive neurons located in the ventromedial region of the distal periaqueductal gray (PAG) has not been previously described as its own entity, leading us to study its extent, connections, and gene expression. It is an oval, bilateral, elongated cluster composed of approximately 475 parvalbumin-expressing neurons in a single mouse hemisphere. In its anterior portion it impinges upon the paratrochlear nucleus (Par4) and in its distal portion it is harbored in the posterodorsal raphe nucleus (PDR). It is known to receive inputs from the orbitofrontal cortex and from the parvafox nucleus in the ventrolateral hypothalamus. Using anterograde tracing methods in parvalbumin-Cre mice, the main projections of the PV2 cluster innervate the supraoculomotor periaqueductal gray (Su3) of the PAG, the parvafox nucleus of the lateral hypothalamus, the gemini nuclei of the posterior hypothalamus, the septal regions, and the diagonal band in the forebrain, as well as various nuclei within the reticular formation in the midbrain and brainstem. Within the brainstem, projections were discrete, but involved areas implicated in autonomic control. The PV2 cluster expressed various peptides and receptors, including the receptor for Adcyap1, a peptide secreted by one of its main afferences, namely, the parvafox nucleus. The expression of GAD1 and GAD2 in the region of the PV2, the presence of Vgat-1 in a subpopulation of PV2-neurons as well as the coexistence of GAD67 immunoreactivity with parvalbumin in terminal endings indicates the inhibitory nature of a subpopulation of PV2-neurons. The PV2 cluster may be part of a feedback controlling the activity of the hypothalamic parvafox and the Su3 nuclei in the periaqueductal gray.

    View Publication Page
    Fitzgerald Lab
    06/29/22 | A geometric framework to predict structure from function in neural networks
    Biswas T, Fitzgerald JE
    Physical Review Research. 2022 Jun 29;4(2):023255. doi: 10.1103/PhysRevResearch.4.023255

    Neural computation in biological and artificial networks relies on nonlinear synaptic integration. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons. Numerical simulations of feedforward and recurrent networks verify our analytical results. Our theoretical framework could be applied to neural activity data to make anatomical predictions that follow generally from the model architecture. It thus provides novel opportunities for discerning what model features are required to accurately relate neural network structure and function.

    View Publication Page
    Svoboda LabDarshan Lab
    06/18/22 | Distributing task-related neural activity across a cortical network through task-independent connections
    Christopher M. Kim , Arseny Finkelstein , Carson C. Chow , Karel Svoboda , Ran Darshan
    bioRxiv. 2022 Jun 18:. doi: 10.1101/2022.06.17.496618

    Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a limited subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. We found that task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

    View Publication Page
    06/15/22 | 2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains
    Banala S, Tkachuk AN, Patel R, Kumar P, Brown TA, Lavis LD
    ACS Bio & Med Chem Au. 2022 Jun 15;2(3):307-12. doi: 10.1021/acsbiomedchemau.1c00068

    Small-molecule fluorescent stains enable the imaging of cellular structures without the need for genetic manipulation. Here, we introduce 2,7-diaminobenzopyrylium (DAB) dyes as live-cell mitochondrial stains excited with violet light. This amalgam of the coumarin and rhodamine fluorophore structures yields dyes with high photostability and tunable spectral properties.

    View Publication Page
    06/12/22 | Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment.
    Frazzette N, Cruz AC, Wu X, Hammer JA, Lippincott-Schwartz J, Siegel RM, Sengupta P
    Cells. 2022 Jun 12;11(12):. doi: 10.3390/cells11121908

    Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.

    View Publication Page
    06/09/22 | Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion
    Shaohe Wang , Kazue Matsumoto , Samantha R. Lish , Alexander X. Cartagena-Rivera , Kenneth M. Yamada
    Cell;184:3702-3716.e30. doi:

    Summary Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.

    View Publication Page