Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

178 Publications

Showing 1-10 of 178 results
11/20/25 | Pericyte and Endothelial Primary Cilia and Centrioles have Disparate Organization Across the Brain Microvasculature
Grubb S, Chanddha V, Lippincott-Schwartz J, Ott C, Mughal A
bioRxiv:. doi: 10.1101/2025.11.19.689283

The brain microvascular functions are strongly influenced by the local microenvironment and cellular organization. Intracellular organelles, including primary cilia and centrioles, play critical roles in sensing and transmitting environmental cues and maintaining vascular integrity. However, their distribution across the brain vasculature remains poorly understood. In this study, we utilized publicly available large-volume electron microscopy datasets encompassing the cerebral vasculature from pial arterioles through parenchymal capillaries to pial venules. We systematically analyzed the cellular organization and characterized the distribution of primary cilia and centrioles in the mouse and human brain microvasculature. We found primary cilia exclusively on human cortical endothelial cells (ECs), indicating inter-species differences between mouse and human. Primary cilia were frequently present on mural cells (MCs, smooth muscle cells or pericytes) surrounding venules and capillaries but rarely observed on arterioles in both mouse and human brains. These MC primary cilia exhibited heterogeneity in ciliogenesis, including cells with ciliary pockets, surface cilia, and a hybrid configuration we refer as a partial pocket. In the mouse brain, many MC primary cilia were closely ensheathed by astrocytic endfeet and occasionally extended between them to establish proximity to synapses, whereas all primary cilia in the human brain were confined within the basal lamina. Our analysis of cellular density revealed similar EC densities between arterioles and venules in mice, but not in human. EC centrioles were consistently positioned against the direction of blood flow relative to the nuclei, suggesting that they may serve as a structural marker for flow direction. Collectively, these findings provide a comprehensive characterization of primary cilia and centrioles, highlighting distinct interspecies differences between mouse and human brain microvasculature. The proximity to neural cells and gradient distribution of these subcellular structures suggest that they may act as antennae for sensing mechanical and chemical signals within the brain microvascular environment.

View Publication Page
11/14/25 | iGlucoSnFR2: A genetically encoded fluorescent sensor for measuring intracellular or extracellular glucose in vivo in mouse brain.
Marvin JS, Mächler P, Meng C, Ates T, Patel RH, Adhikari R, Makurath MA, Ku Z, Feliciano D, Atasoy D, Cui G, Kleinfeld D, Brown TA
Sci Adv. 2025 Nov 14;11(46):eadz3889. doi: 10.1126/sciadv.adz3889

Continuous glucose monitors have proven invaluable for monitoring blood glucose levels for diabetics, but they are of limited use for observing glucose dynamics at the cellular (or subcellular) level. We have developed a second generation, genetically encoded intensity-based glucose sensing fluorescent reporter (iGlucoSnFR2). We show that when it is targeted to the cytosol, it reports intracellular glucose consumption and gluconeogenesis in cell culture, along with efflux from the endoplasmic reticulum. It outperforms the original iGlucoSnFR in vivo when observed by fiber photometry in mouse brain and reports transient increase in glucose concentration when stimulated by noradrenaline or electrical stimulation. Last, we demonstrate that membrane localized iGlucoSnFR2 can be calibrated in vivo to indicate absolute changes in extracellular glucose concentration in awake mice. We anticipate iGlucoSnFR2 facilitating previously unobservable measurements of glucose dynamics with high spatial and temporal resolution in living mammals and other experimental organisms.

View Publication Page
11/06/25 | Secretome translation shaped by lysosomes and lunapark-marked ER junctions.
Choi H, Liao Y, Yoon YJ, Grimm J, Wang N, Lavis LD, Singer RH, Lippincott-Schwartz J
Nature. 2025 Nov 05:. doi: 10.1038/s41586-025-09718-0

The endoplasmic reticulum (ER) is a highly interconnected membrane network that serves as a central site for protein synthesis and maturation. A crucial subset of ER-associated transcripts, termed secretome mRNAs, encode secretory, lumenal and integral membrane proteins, representing nearly one-third of human protein-coding genes. Unlike cytosolic mRNAs, secretome mRNAs undergo co-translational translocation, and thus require precise coordination between translation and protein insertion. Disruption of this process, such as through altered elongation rates, activates stress response pathways that impede cellular growth, raising the question of whether secretome translation is spatially organized to ensure fidelity. Here, using live-cell single-molecule imaging, we demonstrate that secretome mRNA translation is preferentially localized to ER junctions that are enriched with the structural protein lunapark and in close proximity to lysosomes. Lunapark depletion reduced ribosome density and translation efficiency of secretome mRNAs near lysosomes, an effect that was dependent on eIF2-mediated initiation and was reversed by the integrated stress response inhibitor ISRIB. Lysosome-associated translation was further modulated by nutrient status: amino acid deprivation enhanced lysosome-proximal translation, whereas lysosomal pH neutralization suppressed it. These findings identify a mechanism by which ER junctional proteins and lysosomal activity cooperatively pattern secretome mRNA translation, linking ER architecture and nutrient sensing to the production of secretory and membrane proteins.

bioRxiv preprint: https://doi.org/10.1101/2024.11.21.624573

View Publication Page
10/31/25 | ER-to-Golgi Trafficking is a Nutrient-Sensitive Checkpoint Linking Glucose Starvation to Cell Surface Remodeling
Joo JH, Kasberg W, Douglas S, Udoh U, Carisey A, Messing J, Wang Y, Narina S, Pruett-Miller SM, Labelle M, Lippincott-Schwartz J, Chang C, Kundu M
bioRxiv. 2025 October 31:. doi: 10.1101/2025.10.31.685804

Cancer cells adapt to nutrient stress by remodeling the repertoire of proteins on their surface, enabling survival and progression under starvation conditions. However, the molecular mechanisms by which nutrient cues reshape the cell surface proteome to influence cell behavior remain largely unresolved. Here, we show that acute glucose starvation, but not amino acid deprivation or mTOR inhibition, selectively impairs ER-to-Golgi export of specific cargoes, such as E-cadherin, in a SEC24C-dependent manner. Quantitative cell surface proteomics reveal that glucose deprivation remodels the cell surface proteome, notably reducing surface expression of key adhesion molecules. This nutrient-sensitive reprogramming enhances cell migration in vitro and promotes metastasis in vivo. Mechanistically, we show that AMPK and ULK1 signaling orchestrate this process independent of autophagy, with ULK1-mediated phosphorylation of SEC31A driving SEC24C-dependent COPII reorganization. These findings establish ER-to-Golgi trafficking as a nutrient-sensitive regulatory node that links metabolic stress to cell surface remodeling and metastatic potential.

View Publication Page
10/15/25 | Design principles of ciliary signaling.
Ott CM, Lippincott-Schwartz J
J Cell Sci. 2025 Oct 15;138(20):. doi: 10.1242/jcs.264325

Primary cilia are microtubule-based sensory organelles that have been conserved throughout eukaryotic evolution. As discussed in this Review, a cilium is an elongated and highly specialized structure, and, together with its ability to selectively traffic and concentrate proteins, lipids and second messengers, it creates a signaling environment distinct from the cell body. Ciliary signaling pathways adopt a bow-tie network architecture, in which diverse inputs converge on shared effectors and second messengers before diverging to multiple outputs. Unlike other cellular bow-tie systems, cells exploit ciliary geometry, compartmentalization and infrastructure to enhance sensitivity at multiple scales, from individual molecular reactions to entire signaling pathways. In cilia, integration of the bow-tie network architecture with their specialized structure and unique environment confers robustness and evolvability, which enables cilia to acquire diverse signaling roles. However, this versatility comes with vulnerability - rare mutations that disrupt the features most essential for cilia robustness cause multisystem ciliopathies.

View Publication Page
09/29/25 | Towards a unified framework for the function of endoplasmic reticulum exit sites.
Farhan H, Raote I, Campelo F, Ge L, Hirschberg K, Forrester A, Zanetti G, Lippincott-Schwartz J, Pastor-Pareja JC, Perez F, Saito K, Malhotra V
Nat Rev Mol Cell Biol. 2025 Sep 29:. doi: 10.1038/s41580-025-00899-0

Endoplasmic reticulum exit sites (ERES) are specialized, ribosome-free ER subdomains that serve as dynamic portals for COPII-mediated export of proteins from the ER. Beyond their role in the secretory pathway, ERES are implicated in diverse processes, including autophagy and the maturation of lipid droplets, highlighting their functional plasticity. ERES integrate cargo load, membrane tension and spatial cues to remodel their architecture and function in real time. This Roadmap synthesizes our current knowledge on the biogenesis, structural diversity and regulatory logic of ERES. We highlight key unanswered questions in the field, particularly concerning how ERES integrate signals to coordinate protein trafficking under varying cellular states. Finally, we propose a multidisciplinary framework - leveraging advances in high-resolution imaging, synthetic reconstitution and computational modelling - to delineate the principles governing the function and plasticity of ERES. Understanding these mechanisms holds significant potential for developing targeted therapeutic strategies in diseases linked to trafficking dysfunction.

View Publication Page
09/01/25 | Taking Down the Primary Cilium: Pathways for Disassembly in Differentiating Cells.
Ott CM, Mukhopadhyay S
Bioessays. 2025 Sep 01:e70060. doi: 10.1002/bies.70060

Primary cilia are customized subcellular signaling compartments leveraged to detect signals in diverse physiological contexts. Although prevalent throughout mammalian tissues, primary cilia are not universal. Many non-ciliated cells derive from developmental lineages that include ciliated progenitors; however, little is known about how primary cilia are lost as cells differentiate. Here, we examine how ciliated and non-ciliated states emerge during development and are actively maintained. We highlight several pathways for primary cilia loss, including cilia resorption in pre-mitotic cells, cilia deconstruction in post-mitotic cells, cilia shortening via remodeling, and cilia disassembly preceding multiciliogenesis. Lack of ciliogenesis is known to decrease primary cilia frequency and cause ciliopathies. Failure to maintain cilia can also cause primary cilia to be absent. Conversely, defects in primary cilia suppression or disassembly can lead to the presence of primary cilia in non-ciliated cells. We examine how changes in ciliation states could contribute to tumorigenesis and neurodegeneration.

View Publication Page
08/21/25 | A protein tunnel helps stressed lysosomes swell.
Lippincott-Schwartz J
Science. 2025 Aug 21;389(6762):782-783. doi: 10.1126/science.aea5377

The endoplasmic reticulum donates lipids through a tunnel-like protein to help lysosomes expand.

View Publication Page
08/05/25 | Vimentin intermediate filaments as structural and mechanical coordinators of mesenchymal cells.
Guo M, Wong IY, Moore AS, Medalia O, Lippincott-Schwartz J, Weitz DA, Goldman RD
Nat Cell Biol. 2025 Aug 05:. doi: 10.1038/s41556-025-01713-x

Vimentin is a cytoskeletal intermediate filament protein that governs the form and function of mesenchymal cells, although the mechanistic details have been poorly understood. Here we highlight recent findings that reveal the diverse role of vimentin in dynamically organizing intracellular architecture and enhancing mechanical resilience. The exceptional deformability of vimentin can now be understood from its high-resolution three-dimensional structure resolved using cryo-electron microscopy. Vimentin also organizes the motion and positioning of numerous organelles, including mitochondria and the nucleus. Furthermore, it synergizes with the actin cytoskeleton to protect cells from extreme mechanical deformations. Finally, vimentin expression in epithelial-mesenchymal transitions has a functional role in tumour invasion analogous to embryonic development and wound healing. These recent developments emphasize the importance of understanding the multifaceted roles of vimentin intermediate filaments in human health and disease.

View Publication Page
06/25/25 | A genetic driver of epileptic encephalopathy impairs gating of synaptic glycolysis
Koshenov Z, Kokotos AC, Benedetti L, Schwartz JL, Ryan TA
bioRxiv. 2025 Jun 19:. doi: 10.1101/2025.06.17.660213

The brain is a disproportionately large consumer of fuel, estimated to expend \~20% of the whole-body energy budget, and therefore it is critical to adequately control brain fuel expenditures while satisfying its on-demand needs for continued function. The brain is also metabolically vulnerable as the inability to adequately fuel cellular processes that support information transfer between cells leads to rapid neurological impairment. We show here that a genetic driver of early onset epileptic encephalopathy (EOEE), SLC13A5, a Na+/citrate cotransporter (NaCT), is critical for gating the activation of local presynaptic glycolysis. We show that SLC13A5 is in part localized to a presynaptic pool of membrane-bound organelles and acts to transiently clear axonal citrate during electrical activity, in turn activating phosphofructokinase 1. We show that loss of SLC13A5 or mistargeting to the plasma membrane results in suppressed glycolytic gating, activity dependent presynaptic bioenergetic deficits and synapse dysfunction.

View Publication Page