Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4175 Publications

Showing 2231-2240 of 4175 results
Svoboda Lab
10/06/11 | Long-range neuronal circuits underlying the interaction between sensory and motor cortex.
Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K
Neuron. 2011 Oct 6;72:111-23. doi: 10.1016/j.neuron.2011.07.029

In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

View Publication Page
01/23/17 | Long-range self-organization of cytoskeletal myosin II filament stacks.
Hu S, Dasbiswas K, Guo Z, Tee Y, Thiagarajan V, Hersen P, Chew T, Safran SA, Zaidel-Bar R, Bershadsky AD
Nature Cell Biology. 2017 Jan 23;19(2):133-41. doi: 10.1038/ncb3466

Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

View Publication Page
Fitzgerald Lab
10/25/18 | Long-Term Consolidation of Ensemble Neural Plasticity Patterns in Hippocampal Area CA1.
Attardo A, Lu J, Kawashima T, Okuno H, Fitzgerald JE, Bito H, Schnitzer MJ
Cell reports. 2018 Oct 16;25(3):640-650.e2. doi: 10.1016/j.celrep.2018.09.064

Neural network remodeling underpins the ability to remember life experiences, but little is known about the long-term plasticity of neural populations. To study how the brain encodes episodic events, we used time-lapse two-photon microscopy and a fluorescent reporter of neural plasticity based on an enhanced form of the synaptic activity-responsive element (E-SARE) within the Arc promoter to track thousands of CA1 hippocampal pyramidal cells over weeks in mice that repeatedly encountered different environments. Each environment evokes characteristic patterns of ensemble neural plasticity, but with each encounter, the set of activated cells gradually evolves. After repeated exposures, the plasticity patterns evoked by an individual environment progressively stabilize. Compared with young adults, plasticity patterns in aged mice are less specific to individual environments and less stable across repeat experiences. Long-term consolidation of hippocampal plasticity patterns may support long-term memory formation, whereas weaker consolidation in aged subjects might reflect declining memory function.

View Publication Page
12/13/22 | Long-term imaging reveals behavioral plasticity during C. elegans dauer exit
Friedrich Preusser , Anika Neuschulz , Jan Philipp Junker , Nikolaus Rajewsky , Stephan Preibisch
BMC Biology. 2022 Dec 13;20(1):277. doi: 10.1186/s12915-022-01471-4

During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to adjust through dynamic expression of neurotransmitters and receptors but also through growth, spatial reorganization and connectivity while integrating external stimuli. For instance, despite having a fixed neuronal cell lineage, the nematode Caenorhabditis elegans’ nervous system remains plastic throughout its development. Here, we focus on a specific example of nervous system plasticity, the C. elegans dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive dauer stage and adapt their behavior to cope with a new environment. Upon improved conditions, this stress resistant developmental stage is actively reversed to resume reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva’s behavioral change is unknown. To fill this gap, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments to identify key decision points. Combining long-term behavioral imaging with transcriptomics, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. Taken together, we show how a developing nervous system can robustly integrate environmental changes, activate a developmental switch and adapt the organism’s behavior to a new environment.

View Publication Page
02/07/19 | Looking back and looking forward at Janelia.
Rubin GM, O'Shea EK
eLife. 2019 Feb07;8:e44826. doi: 10.7554/eLife.44826

Starting a new research campus is a leap of faith. Only later, in the full measure of time, is it possible to take stock of what has worked and what could have been done better or differently. The Janelia Research Campus opened its doors 12 years ago. What has it achieved? What has it taught us? And where does Janelia go from here?

View Publication Page
07/24/14 | Looking under the lamp post: neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila.
Cande J, Stern DL, Morita T, Prud'homme B, Gompel N
Cell Reports. 2014 Jul 24;8(2):363-70. doi: 10.1016/j.celrep.2014.06.023

How do evolved genetic changes alter the nervous system to produce different patterns of behavior? We address this question using Drosophila male courtship behavior, which is innate, stereotyped, and evolves rapidly between species. D. melanogaster male courtship requires the male-specific isoforms of two transcription factors, fruitless and doublesex. These genes underlie genetic switches between female and male behaviors, making them excellent candidate genes for courtship behavior evolution. We tested their role in courtship evolution by transferring the entire locus for each gene from divergent species to D. melanogaster. We found that despite differences in Fru+ and Dsx+ cell numbers in wild-type species, cross-species transgenes rescued D. melanogaster courtship behavior and no species-specific behaviors were conferred. Therefore, fru and dsx are not a significant source of evolutionary variation in courtship behavior.

View Publication Page
08/01/08 | Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol.
Kapfhamer D, Bettinger JC, Davies AG, Eastman CL, Smail EA, Heberlein U, McIntire SL
Genes, Brain, and Behavior. 2008 Aug;7(6):669-76. doi: 10.1111/j.1601-183X.2008.00404.x

The mechanisms by which ethanol induces changes in behavior are not well understood. Here, we show that Caenorhabditis elegans loss-of-function mutations in the synaptic vesicle-associated RAB-3 protein and its guanosine triphosphate exchange factor AEX-3 confer resistance to the acute locomotor effects of ethanol. Similarly, mice lacking one or both copies of Rab3A are resistant to the ataxic and sedative effects of ethanol, and Rab3A haploinsufficiency increases voluntary ethanol consumption. These data suggest a conserved role of RAB-3-/RAB3A-regulated neurotransmitter release in ethanol-related behaviors.

View Publication Page
03/11/09 | Loss of sensitivity in an analog neural circuit.
Borghuis BG, Sterling P, Smith RG
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2009 Mar 11;29:3045-58. doi: 10.1523/JNEUROSCI.5071-08.2009

A low-contrast spot that activates just one ganglion cell in the retina is detected in the spike train of the cell with about the same sensitivity as it is detected behaviorally. This is consistent with Barlow’s proposal that the ganglion cell and later stages of spiking neurons transfer information essentially without loss. Yet, when losses of sensitivity by all preneural factors are accounted for, predicted sensitivity near threshold is considerably greater than behavioral sensitivity, implying that somewhere in the brain information is lost. We hypothesized that the losses occur mainly in the retina, where graded signals are processed by analog circuits that transfer information at high rates and low metabolic cost. To test this, we constructed a model that included all preneural losses for an in vitro mammalian retina, and evaluated the model to predict sensitivity at the cone output. Recording graded responses postsynaptic to the cones (from the type A horizontal cell) and comparing to predicted preneural sensitivity, we found substantial loss of sensitivity (4.2-fold) across the first visual synapse. Recording spike responses from brisk-transient ganglion cells stimulated with the same spot, we found a similar loss (3.5-fold) across the second synapse. The total retinal loss approximated the known overall loss, supporting the hypothesis that from stimulus to perception, most loss near threshold is retinal.

View Publication Page
01/16/15 | Low affinity binding site clusters confer Hox specificity and regulatory robustness.
Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F, Mann RS, Stern DL
Cell. 2015 Jan 15;160:191-203. doi: 10.1016/j.cell.2014.11.041

In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.

View Publication Page
Gonen Lab
06/22/17 | Low-complexity domains adhere by reversible amyloid-like interactions between kinked β-sheets.
Hughes MP, Sawaya MR, Goldschmidt L, Rodriguez JA, Cascio D, Gonen T, Eisenberg DS
bioRxiv. 2017 Jun 22:. doi: 10.1101/153817

Control of metabolism by compartmentation is a widespread feature of higher cells. Recent studies have focused on dynamic intracellular bodies such as stress granules, P-bodies, nucleoli, and metabolic puncta. These bodies appear as separate phases, some containing reversible, amyloid-like fibrils formed by interactions of low-complexity protein domains. Here we report five atomic structures of segments of low-complexity domains from granule-forming proteins, one determined to 1.1 Å resolution by micro-electron diffraction. Four of these interacting protein segments show common characteristics, all in contrast to pathogenic amyloid: kinked peptide backbones, small surface areas of interaction, and predominate attractions between aromatic side-chains. By computationally threading the human proteome on three of our kinked structures, we identified hundreds of low-complexity segments potentially capable of forming such reversible interactions. These segments are found in proteins as diverse as RNA binders, nuclear pore proteins, keratins, and cornified envelope proteins, consistent with the capacity of cells to form a wide variety of dynamic intracellular bodies.

View Publication Page