Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4079 Publications

Showing 2671-2680 of 4079 results
Pastalkova Lab
02/25/04 | Object-location memory impairment in patients with thermal lesions to the right or left hippocampus.
Stepankova K, Fenton AA, Pastalkova E, Kalina M, Bohbot VD
Neuropsychologia. 2004 Feb 25;42(8):1017-28. doi: 10.1016/j.neuropsychologia.2004.01.002

Memory for object-location was investigated by testing subjects with small unilateral thermolesions to the medial temporal lobe using small-scale 2D (Abstract) or large-scale 3D (Real) recall conditions. Four patients with lesions of the left hippocampus (LH), 10 patients with damage to the right hippocampus (RH) and 9 matched normal controls (NC) were tested. Six task levels were presented in a pseudorandom order. During each level, subjects viewed one to six different objects on the floor of a circular curtained arena 2.90 m in diameter for 10 s. Recall was tested by marking the locations of objects on a map of the arena (Abstract recall) and then by replacing the objects in the arena (Real recall). Two component errors were studied by calculating the Location Error (LE), independent of the object identity and the configuration error by finding the best match to the presented configuration. The RH group was impaired relative to the NC for nearly all combinations of recall and error types. An impairment was observed in this group even for one object and it deepened sharply with an increasing object number. Damage to the right perirhinal or parahippocampal cortices did not add to the impairment. Deficits in the LH group were also observed, but less consistently. The data indicate that spatial memory is strongly but not exclusively lateralised to the right medial temporal lobe.

View Publication Page
04/11/07 | Observability of Higgs produced with top quarks and decaying to bottom quarks
Benedetti D, Cucciarelli S, Hill C, Incandela J, Koay SA, Riccardi C, Santocchia A, Schmidt A, Torre P, Weiser C
Journal of Physics G: Nuclear and Particle Physics. 04/20027;34(5):N221 - N250. doi: 10.1088/0954-3899/34/5/N03

The decay, , is dominant for a Standard Model Higgs boson in the mass range just above the exclusion limit of 114.4 GeV/c2 reported by the LEP experiments. Unfortunately, an overwhelming abundance of  events arising from more mundane sources, together with the lack of precision inherent in the reconstruction of the Higgs mass, renders this decay mode a priori undetectable in the case of direct Higgs production at the LHC. It is therefore of no small interest to investigate whether  can be observed in those cases where the Higgs is produced in association with other massive particles. In this note, the results of a study of Higgs bosons produced in association with top quarks and decaying via  are presented. The study was performed as realistically as possible by employing a full and detailed Monte Carlo simulation of the CMS detector followed by the application of trigger and reconstruction algorithms that were developed for use with real data. Important systematic effects resulting from such sources as the uncertainties in the jet energy scale and the estimated rates for correctly tagging b jets or mistagging non-b jets have been taken into account. The impact of large theoretical uncertainties in the cross sections for  plus N jets processes due to an absence of next-to-leading order calculations is also considered.

View Publication Page
Magee Lab
12/22/11 | Observations on clustered synaptic plasticity and highly structured input patterns.
Magee JC
Neuron. 2011 Dec 22;72(6):887-8. doi: 10.1016/j.neuron.2011.12.009

In this issue of Neuron, Makino and Malinow and Kleindienst et al. present evidence of a behaviorally induced form of synaptic plasticity that would encourage the development of fine-scale structured input patterns and the binding of features within single neurons.

View Publication Page
02/08/11 | Observers exploit stochastic models of sensory change to help judge the passage of time.
Ahrens MB, Sahani M
Current Biology. 2011 Feb 8;21(3):200-6. doi: 10.1016/j.cub.2010.12.043

Sensory stimulation can systematically bias the perceived passage of time, but why and how this happens is mysterious. In this report, we provide evidence that such biases may ultimately derive from an innate and adaptive use of stochastically evolving dynamic stimuli to help refine estimates derived from internal timekeeping mechanisms. A simplified statistical model based on probabilistic expectations of stimulus change derived from the second-order temporal statistics of the natural environment makes three predictions. First, random noise-like stimuli whose statistics violate natural expectations should induce timing bias. Second, a previously unexplored obverse of this effect is that similar noise stimuli with natural statistics should reduce the variability of timing estimates. Finally, this reduction in variability should scale with the interval being timed, so as to preserve the overall Weber law of interval timing. All three predictions are borne out experimentally. Thus, in the context of our novel theoretical framework, these results suggest that observers routinely rely on sensory input to augment their sense of the passage of time, through a process of Bayesian inference based on expectations of change in the natural environment.

View Publication Page
04/20/18 | Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.
Liu T, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, Kohrman AQ, Medwig TN, Dambournet D, Forster R, Cunniff B, Ruan Y, Yashiro H, Scholpp S, Meyerowitz EM, Hockemeyer D, Drubin DG, Martin BL, Matus DQ, Koyama M, Megason SG, Kirchhausen T, Betzig E
Science (New York, N.Y.). 2018 Apr 20;360(6386):. doi: 10.1126/science.aaq1392

True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.

View Publication Page
02/17/09 | Odor coding by modules of coherent mitral/tufted cells in the vertebrate olfactory bulb.
Chen T, Lin B, Schild D
Proceedings of the National Academy of Sciences of the United States of America. 2009 Feb 17;106(7):2401-6. doi: 10.1073/pnas.0810151106

Odor representation in the olfactory bulb (OB) undergoes a transformation from a combinatorial glomerular map to a distributed mitral/tufted (M/T) cell code. To understand this transformation, we analyzed the odor representation in large populations of individual M/T cells in the Xenopus OB. The spontaneous [Ca(2+)] activities of M/T cells appeared to be irregular, but there were groups of spatially distributed neurons showing synchronized [Ca(2+)] activities. These neurons were always connected to the same glomerulus. Odorants elicited complex spatiotemporal response patterns in M/T cells where nearby neurons generally showed little correlation. But the responses of neurons connected to the same glomerulus were virtually identical, irrespective of whether the responses were excitatory or inhibitory, and independent of the distance between them. Synchronous neurons received correlated EPSCs and were coupled by electrical conductances that could account for the correlated responses. Thus, at the output stage of the OB, odors are represented by modules of distributed and synchronous M/T cells associated with the same glomeruli. This allows for parallel input to higher brain centers.

View Publication Page
04/09/18 | Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.
Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp J, Parnas M, Davis FP, Shohat-Ophir G
PLoS Genetics. 2018 Apr 09;14(4):e1007328. doi: 10.1371/journal.pgen.1007328

Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

View Publication Page
05/20/18 | Of what use is connectomics? A personal perspective on the connectome.
Meinertzhagen IA
The Journal of Experimental Biology. 2018 May 20;221(Pt 10):. doi: 10.1242/jeb.164954

The brain is a network of neurons and its biological output is behaviour. This is an exciting age, with a growing acknowledgement that the comprehensive compilation of synaptic circuits densely reconstructed in the brains of model species is now both technologically feasible and a scientifically enabling possibility in neurobiology, much as 30 years ago genomics was in molecular biology and genetics. Implemented by huge advances in electron microscope technology, especially focused ion beam-scanning electron microscope (FIB-SEM) milling (see Glossary), image capture and alignment, and computer-aided reconstruction of neuron morphologies, enormous progress has been made in the last decade in the detailed knowledge of the actual synaptic circuits formed by real neurons, in various brain regions of the fly It is useful to distinguish synaptic pathways that are major, with 100 or more presynaptic contacts, from those that are minor, with fewer than about 10; most neurites are both presynaptic and postsynaptic, and all synaptic sites have multiple postsynaptic dendrites. Work on has spearheaded these advances because cell numbers are manageable, and neuron classes are morphologically discrete and genetically identifiable, many confirmed by reporters. Recent advances are destined within the next few years to reveal the complete connectome in an adult fly, paralleling advances in the larval brain that offer the same prospect possibly within an even shorter time frame. The final amendment and validation of segmented bodies by human proof-readers remains the most time-consuming step, however. The value of a complete connectome in is that, by targeting to specific neurons transgenes that either silence or activate morphologically identified circuits, and then identifying the resulting behavioural outcome, we can determine the causal mechanism for behaviour from its loss or gain. More importantly, the connectome reveals hitherto unsuspected pathways, leading us to seek novel behaviours for these. Circuit information will eventually be required to understand how differences between brains underlie differences in behaviour, and especially to herald yet more advanced connectomic strategies for the vertebrate brain, with an eventual prospect of understanding cognitive disorders having a connectomic basis. Connectomes also help us to identify common synaptic circuits in different species and thus to reveal an evolutionary progression in candidate pathways.

View Publication Page
12/01/07 | Olfactory coding with all-or-nothing glomeruli.
Koulakov A, Gelperin A, Rinberg D
Journal of Neurophysiology. 2007 Dec;98(6):3134-42. doi: 10.1523/JNEUROSCI.3613-08.2008

We present a model for olfactory coding based on spatial representation of glomerular responses. In this model distinct odorants activate specific subsets of glomeruli, dependent on the odorant’s chemical identity and concentration. The glomerular response specificities are understood statistically, based on experimentally measured distributions of activation thresholds. A simple version of the model, in which glomerular responses are binary (the all-or-nothing model), allows us to account quantitatively for the following results of human/rodent olfactory psychophysics: 1) just noticeable differences in the perceived concentration of a single odor (Weber ratios) are as low as dC/C approximately 0.04; 2) the number of simultaneously perceived odors can be as high as 12; and 3) extensive lesions of the olfactory bulb do not lead to significant changes in detection or discrimination thresholds. We conclude that a combinatorial code based on a binary glomerular response is sufficient to account for several important features of the discrimination capacity of the mammalian olfactory system.

View Publication Page
08/25/09 | Olfactory information processing in Drosophila.
Masse NY, Turner GC, Jeffers GS
Current Biology : CB. 2009 Aug 25;19(16):R700-13. doi: 10.1016/j.cub.2009.06.026

In both insect and vertebrate olfactory systems only two synapses separate the sensory periphery from brain areas required for memory formation and the organisation of behaviour. In the Drosophila olfactory system, which is anatomically very similar to its vertebrate counterpart, there has been substantial recent progress in understanding the flow of information from experiments using molecular genetic, electrophysiological and optical imaging techniques. In this review, we shall focus on how olfactory information is processed and transformed in order to extract behaviourally relevant information. We follow the progress from olfactory receptor neurons, through the first processing area, the antennal lobe, to higher olfactory centres. We address both the underlying anatomy and mechanisms that govern the transformation of neural activity. We emphasise our emerging understanding of how different elementary computations, including signal averaging, gain control, decorrelation and integration, may be mapped onto different circuit elements.

View Publication Page