Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Looger Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

138 Publications

Showing 121-130 of 138 results
Looger LabDruckmann LabKeller Lab
09/23/19 | Single-cell reconstruction of emerging population activity in an entire developing circuit.
Wan Y, Wei Z, Looger LL, Koyama M, Druckmann S, Keller PJ
Cell. 2019 Sep 23;179(2):. doi: 10.1016/j.cell.2019.08.039

Animal survival requires a functioning nervous system to develop during embryogenesis. Newborn neurons must assemble into circuits producing activity patterns capable of instructing behaviors. Elucidating how this process is coordinated requires new methods that follow maturation and activity of all cells across a developing circuit. We present an imaging method for comprehensively tracking neuron lineages, movements, molecular identities, and activity in the entire developing zebrafish spinal cord, from neurogenesis until the emergence of patterned activity instructing the earliest spontaneous motor behavior. We found that motoneurons are active first and form local patterned ensembles with neighboring neurons. These ensembles merge, synchronize globally after reaching a threshold size, and finally recruit commissural interneurons to orchestrate the left-right alternating patterns important for locomotion in vertebrates. Individual neurons undergo functional maturation stereotypically based on their birth time and anatomical origin. Our study provides a general strategy for reconstructing how functioning circuits emerge during embryogenesis.

View Publication Page
Looger Lab
01/01/17 | Solution of the structure of a calmodulin-peptide complex in a novel configuration from a variably twinned data set.
Keller JP
Acta Crystallographica. Section D, Structural Biology. 2017 Jan 01;73(Pt 1):22-31. doi: 10.1107/S2059798316019318

Structure determination of conformationally variable proteins can prove challenging even when many possible molecular-replacement (MR) search models of high sequence similarity are available. Calmodulin (CaM) is perhaps the best-studied archetype of these flexible proteins: while there are currently ∼450 structures of significant sequence similarity available in the Protein Data Bank (PDB), novel conformations of CaM and complexes thereof continue to be reported. Here, the details of the solution of a novel peptide-CaM complex structure by MR are presented, in which only one MR solution of marginal quality was found despite the use of 120 different search models, an exclusivity enhanced by the presence of a high degree of hemihedral twinning (overall refined twin fraction = 0.43). Ambiguities in the initial MR electron-density maps were overcome by using MR-SAD: phases from the MR partial model were used to identify weak anomalous scatterers (calcium, sulfur and chloride), which were in turn used to improve the phases, automatically rebuild the structure and resolve sequence ambiguities. Retrospective analysis of consecutive wedges of the original data sets showed twin fractions ranging from 0.32 to 0.55, suggesting that the data sets were variably twinned. Despite these idiosyncrasies and obstacles, the data themselves and the final model were of high quality and indeed showed a novel, nearly right-angled conformation of the bound peptide.

View Publication Page
11/01/18 | Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR.
Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Mueller JA, Schoch-McGovern S, Wang SS, Quiroz FJ, Rebola N, Bao H, Little JP, Tkachuk AN, Hantman AW, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL
Nature Methods. 2018 Nov;15(11):9386-9. doi: 10.1038/s41592-018-0171-3

Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.

View Publication Page
Looger Lab
02/18/15 | Stimulation-evoked Ca2+ signals in astrocytic processes at hippocampal CA3-CA1 synapses of adult mice are modulated by glutamate and ATP.
Tang W, Szokol K, Jensen V, Enger R, Trivedi CA, Hvalby Ø, Helm PJ, Looger LL, Sprengel R, Nagelhus EA
The Journal of Neuroscience. 2015 Feb 18;35(7):3016-21. doi: 10.1523/JNEUROSCI.3319-14.2015

To date, it has been difficult to reveal physiological Ca(2+) events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca(2+) signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca(2+) indicator GCaMP5E driven by the glial fibrillary acidic protein promoter. Two-photon imaging revealed global stimulation-evoked astrocytic Ca(2+) signals with distinct latencies, rise rates, and amplitudes in fine processes and somata. Specifically, the Ca(2+) signals in the processes were faster and of higher amplitude than those in the somata. A combination of P2 purinergic and group I/II metabotropic glutamate receptor (mGluR) antagonists reduced the amplitude of the Ca(2+) transients by 30-40% in both astrocytic compartments. Blockage of the mGluRs alone only modestly reduced the magnitude of the stimulation-evoked Ca(2+) signals in processes and failed to affect the somatic Ca(2+) response. Local application of group I or I/II mGluR agonists or adenosine triphosphate (ATP) elicited global astrocytic Ca(2+) signals that mimicked the stimulation-evoked astrocytic Ca(2+) responses. We conclude that stimulation-evoked Ca(2+) signals in astrocytic processes at CA3-CA1 synapses of adult mice (1) differ from those in astrocytic somata and (2) are modulated by glutamate and ATP.

View Publication Page
Looger LabSchreiter Lab
12/02/11 | Structure of the escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors.
Alicea I, Marvin JS, Miklos AE, Ellington AD, Looger LL, Schreiter ER
Journal of Molecular Biology. 2011 Dec 2;414(3):356-69. doi: 10.1016/j.jmb.2011.09.047

The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by \~{}70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.

View Publication Page
Looger Lab
04/17/20 | Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b..
Weber C, Zhou Y, Lee JG, Looger LL, Qian G, Ge C, Capel B
Science. 2020 Apr 17;368(6488):303-306. doi: 10.1126/science.aaz4165

In many reptiles, including the red-eared slider turtle (), sex is determined by ambient temperature during embryogenesis. We previously showed that the epigenetic regulator is elevated at the male-producing temperature and essential to activate the male pathway. In this work, we established a causal link between temperature and transcriptional regulation of We show that signal transducer and activator of transcription 3 (STAT3) is phosphorylated at the warmer, female-producing temperature, binds the locus, and represses transcription, blocking the male pathway. Influx of Ca, a mediator of STAT3 phosphorylation, is elevated at the female temperature and acts as a temperature-sensitive regulator of STAT3 activation.

View Publication Page
Looger Lab
06/11/21 | The functional organization of excitatory synaptic input to place cells.
Adoff MD, Climer JR, Davoudi H, Marvin JS, Looger LL, Dombeck DA
Nature Communications. 2021 Jun 11;12(1):3558. doi: 10.1038/s41467-021-23829-y

Hippocampal place cells contribute to mammalian spatial navigation and memory formation. Numerous models have been proposed to explain the location-specific firing of this cognitive representation, but the pattern of excitatory synaptic input leading to place firing is unknown, leaving no synaptic-scale explanation of place coding. Here we used resonant scanning two-photon microscopy to establish the pattern of synaptic glutamate input received by CA1 place cells in behaving mice. During traversals of the somatic place field, we found increased excitatory dendritic input, mainly arising from inputs with spatial tuning overlapping the somatic field, and functional clustering of this input along the dendrites over ~10 µm. These results implicate increases in total excitatory input and co-activation of anatomically clustered synaptic input in place firing. Since they largely inherit their fields from upstream synaptic partners with similar fields, many CA1 place cells appear to be part of multi-brain-region cell assemblies forming representations of specific locations.

View Publication Page
01/03/20 | The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila.
Agrawal P, Kao D, Chung P, Looger LL
Journal of Experimental Biology. 2020 Jan 03;223(2):. doi: 10.1242/jeb.207407

Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide (), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on signaling, similar to the actions of many neuromodulators in other contexts.

View Publication Page
Looger Lab
10/06/16 | The Oscillating Stimulus Transporter Assay, OSTA: Quantitative functional imaging of transporter protein activity in time and frequency domains.
Keller JP, Looger LL
Molecular Cell. 2016 Oct 6;64(1):199-212. doi: 10.1016/j.molcel.2016.09.001

Transmembrane transporter proteins allow the passage of essentially all biologically important molecules across the lipid membranes of cells and organelles and are therefore of central importance to all forms of life. Current methods of transporter measurement, however, are lacking in several dimensions. Herein, a method is presented in which oscillating stimuli are presented to transporter-expressing cells, and activity is measured through imaging the corresponding oscillating responses of intracellular fluorescent sensors. This approach yields continuous temporal readouts of transporter activity and can therefore be used to measure time-dependent responses to drugs and other stimuli. Because of the periodic nature of the response, temporal Fourier transforms can be used to identify and quantify regions of interest in the xy plane and to overcome noise. This technique, called the Oscillating Stimulus Transporter Assay (OSTA), should greatly facilitate both functional characterization of transporters as well as high-throughput screening of drugs for transporters of particular pathophysiological interest.

View Publication Page
Looger Lab
08/12/10 | The role of the TRP channel NompC in Drosophila larval and adult locomotion.
Cheng LE, Ong WS, Looger LL, Jan LY, Jan YN
Neuron. 2010 Aug 12;67(3):373-80. doi: 10.1016/j.neuron.2010.07.004

The generation of coordinated body movements relies on sensory feedback from mechanosensitive proprioceptors. We have found that the proper function of NompC, a putative mechanosensitive TRP channel, is not only required for fly locomotion, but also crucial for larval crawling. Calcium imaging revealed that NompC is required for the activation of two subtypes of sensory neurons during peristaltic muscle contractions. Having isolated a full-length nompC cDNA with a protein coding sequence larger than previously predicted, we demonstrate its function by rescuing locomotion defects in nompC mutants, and further show that antibodies against the extended C terminus recognize NompC in chordotonal ciliary tips. Moreover, we show that the ankyrin repeats in NompC are required for proper localization and function of NompC in vivo and are required for association of NompC with microtubules. Taken together, our findings suggest that NompC mediates proprioception in locomotion and support its role as a mechanosensitive channel.

View Publication Page