Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Pachitariu Lab / Publications
general_search_page-panel_pane_1 | views_panes

47 Publications

Showing 41-47 of 47 results
01/20/21 | Survey of spiking in the mouse visual system reveals functional hierarchy.
Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA, Groblewski PA, Ahmed R, Arkhipov A, Bernard A, Billeh YN, Brown D, Buice MA, Cain N, Caldejon S, Casal L, Cho A, Chvilicek M, Cox TC, Dai K, Denman DJ, de Vries SE, Dietzman R, Esposito L, Farrell C, Feng D, Galbraith J, Garrett M, Gelfand EC, Hancock N, Harris JA, Howard R, Hu B, Hytnen R, Iyer R, Jessett E, Johnson K, Kato I, Kiggins J, Lambert S, Lecoq J, Ledochowitsch P, Lee JH, Leon A, Li Y, Liang E, Long F, Mace K, Melchior J, Millman D, Mollenkopf T, Nayan C, Ng L, Ngo K, Nguyen T, Nicovich PR, North K, Ocker GK, Ollerenshaw D, Oliver M, Pachitariu M, Perkins J, Reding M, Reid D, Robertson M, Ronellenfitch K, Seid S, Slaughterbeck C, Stoecklin M, Sullivan D, Sutton B, Swapp J, Thompson C, Turner K, Wakeman W, Whitesell JD, Williams D, Williford A, Young R, Zeng H, Naylor S, Phillips JW, Reid RC, Mihalas S, Olsen SR, Koch C
Nature. 2021 Jan 20;592(7852):86-92(7852):86-92. doi: 10.1038/s41586-020-03171-x

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.

View Publication Page
04/04/19 | Thirst regulates motivated behavior through modulation of brainwide neural population dynamics.
Allen WE, Chen MZ, Pichamoorthy N, Tien RH, Pachitariu M, Luo L, Deisseroth K
Science. 2019 Apr 04;364(6437):253. doi: 10.1126/science.aav3932

Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior, as mice consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. Focal optogenetic activation of hypothalamic thirst-sensing neurons, after satiation, returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions determining how a brainwide dynamical system transforms sensory input into behavioral output.

View Publication Page
01/12/22 | Toroidal topology of population activity in grid cells.
Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser M, Moser EI
Nature. 2022 Jan 12;602(7895):123-128. doi: 10.1038/s41586-021-04268-7

The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations, and are organized in modules that collectively form a population code for the animal's allocentric position. The invariance of the correlation structure of this population code across environments and behavioural states, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.

View Publication Page
07/02/24 | Towards a simplified model of primary visual cortex
Du F, Núñez-Ochoa MA, Pachitariu M, Stringer C
bioRxiv. 2024 Jul 02:. doi: 10.1101/2024.06.30.601394

Artificial neural networks (ANNs) have been shown to predict neural responses in primary visual cortex (V1) better than classical models. However, this performance comes at the expense of simplicity because the ANN models typically have many hidden layers with many feature maps in each layer. Here we show that ANN models of V1 can be substantially simplified while retaining high predictive power. To demonstrate this, we first recorded a new dataset of over 29,000 neurons responding to up to 65,000 natural image presentations in mouse V1. We found that ANN models required only two convolutional layers for good performance, with a relatively small first layer. We further found that we could make the second layer small without loss of performance, by fitting a separate "minimodel" to each neuron. Similar simplifications applied for models of monkey V1 neurons. We show that these relatively simple models can nonetheless be useful for tasks such as object and visual texture recognition and we use the models to gain insight into how texture invariance arises in biological neurons.

View Publication Page
04/07/24 | Transformers do not outperform Cellpose
Carsen Stringer , Marius Pachitariu
bioRxiv. 2024 Apr 7:. doi: 10.1101/2024.04.06.587952

In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.

View Publication Page
05/02/18 | Vision and locomotion shape the interactions between neuron types in mouse visual cortex.
Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD
Neuron. 2018 May 2;98(3):602-15. doi: https://doi.org/10.1101/058396

Cortical computation arises from the interaction of multiple neuronal types, including pyramidal (Pyr) cells and interneurons expressing Sst, Vip, or Pvalb. To study the circuit underlying such interactions, we imaged these four types of cells in mouse primary visual cortex(V1). Our recordings in darkness were consistent with a "disinhibitory" model in which locomotion activates Vip cells, thus inhibiting Sst cells and disinhibiting Pyr cells. However, the disinhibitory model failed when visual stimuli were present: locomotion increased Sst cell responses to large stimuli and Vip cell responses to small stimuli. A recurrent network model successfully predicted each cell type's activity from the measured activity of other types. Capturing the effects of locomotion, however, required allowing it to increase feedforward synaptic weights and modulate recurrent weights. This network model summarizes interneuron interactions and suggests that locomotion may alter cortical computation by changing effective synaptic connectivity.

View Publication Page
01/09/17 | Visual motion computation in recurrent neural networks.
Pachitariu M, Sahani M
bioRxiv. 2017 Jan 09:099101. doi: https://doi.org/10.1101/099101

Populations of neurons in primary visual cortex (V1) transform direct thalamic inputs into a cortical representation which acquires new spatio-temporal properties. One of these properties, motion selectivity, has not been strongly tied to putative neural mechanisms, and its origins remain poorly understood. Here we propose that motion selectivity is acquired through the recurrent mechanisms of a network of strongly connected neurons. We first show that a bank of V1 spatiotemporal receptive fields can be generated accurately by a network which receives only instantaneous inputs from the retina. The temporal structure of the receptive fields is generated by the long timescale dynamics associated with the high magnitude eigenvalues of the recurrent connectivity matrix. When these eigenvalues have complex parts, they generate receptive fields that are inseparable in time and space, such as those tuned to motion direction. We also show that the recurrent connectivity patterns can be learnt directly from the statistics of natural movies using a temporally-asymmetric Hebbian learning rule. Probed with drifting grating stimuli and moving bars, neurons in the model show patterns of responses analogous to those of direction-selective simple cells in primary visual cortex. These computations are enabled by a specific pattern of recurrent connections, that can be tested by combining connectome reconstructions with functional recordings.

View Publication Page