Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Reiser Lab / Publications
general_search_page-panel_pane_1 | views_panes

43 Publications

Showing 31-40 of 43 results
Your Criteria:
    10/24/16 | Central brain circuitry for color-vision-modulated behaviors.
    Longden KD
    Current Biology : CB. 2016 Oct 24;26(20):R981-8. doi: 10.1016/j.cub.2016.07.071

    Color is famous for not existing in the external world: our brains create the perception of color from the spatial and temporal patterns of the wavelength and intensity of light. For an intangible quality, we have detailed knowledge of its origins and consequences. Much is known about the organization and evolution of the first phases of color processing, the filtering of light in the eye and processing in the retina, and about the final phases, the roles of color in behavior and natural selection. To understand how color processing in the central brain has evolved, we need well-defined pathways or circuitry where we can gauge how color contributes to the computations involved in specific behaviors. Examples of such pathways or circuitry that are dedicated to processing color cues are rare, despite the separation of color and luminance pathways early in the visual system of many species, and despite the traditional definition of color as being independent of luminance. This minireview presents examples in which color vision contributes to behaviors dominated by other visual modalities, examples that are not part of the canon of color vision circuitry. The pathways and circuitry process a range of chromatic properties of objects and their illumination, and are taken from a variety of species. By considering how color processing complements luminance processing, rather than being independent of it, we gain an additional way to account for the diversity of color coding in the central brain, its consequences for specific behaviors and ultimately the evolution of color vision.

    View Publication Page
    08/10/16 | Natural courtship song variation caused by an intronic retroelement in an ion channel gene.
    Ding Y, Berrocal A, Morita T, Longden KD, Stern DL
    Nature. 2016 Aug 10:. doi: 10.1038/nature19093

    Animal species display enormous variation for innate behaviours, but little is known about how this diversity arose. Here, using an unbiased genetic approach, we map a courtship song difference between wild isolates of Drosophila simulans and Drosophila mauritiana to a 966 base pair region within the slowpoke (slo) locus, which encodes a calcium-activated potassium channel. Using the reciprocal hemizygosity test, we confirm that slo is the causal locus and resolve the causal mutation to the evolutionarily recent insertion of a retroelement in a slo intron within D. simulans. Targeted deletion of this retroelement reverts the song phenotype and alters slo splicing. Like many ion channel genes, slo is expressed widely in the nervous system and influences a variety of behaviours; slo-null males sing little song with severely disrupted features. By contrast, the natural variant of slo alters a specific component of courtship song, illustrating that regulatory evolution of a highly pleiotropic ion channel gene can cause modular changes in behaviour.

    View Publication Page
    10/06/15 | A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes.
    Dyakova O, Lee Y, Longden KD, Kiselev VG, Nordström K
    Nature Communications. 2015 Oct 06;6:8522. doi: 10.1038/ncomms9522

    Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons with limited bandwidth to encode challengingly large input ranges. Natural scenes are not random, and peripheral visual systems in vertebrates and insects have evolved to respond efficiently to their typical spatial statistics. The mammalian visual cortex is also tuned to natural spatial statistics, but less is known about coding in higher order neurons in insects. To redress this we here record intracellularly from a higher order visual neuron in the hoverfly. We show that the cSIFE neuron, which is inhibited by stationary images, is maximally inhibited when the slope constant of the amplitude spectrum is close to the mean in natural scenes. The behavioural optomotor response is also strongest to images with naturalistic image statistics. Our results thus reveal a close coupling between the inherent statistics of natural scenes and higher order visual processing in insects.

    View Publication Page
    03/19/15 | Neuroscience: hot on the trail of temperature processing.
    Florence TJ, Reiser MB
    Nature. 2015 Mar 19;519(7543):296-7. doi: 10.1038/nature14209
    05/21/14 | Wide-field feedback neurons dynamically tune early visual processing.
    Tuthill JC, Nern A, Rubin GM, Reiser MB
    Neuron. 2014 May 21;82(4):887-95. doi: 10.1016/j.neuron.2014.04.023

    An important strategy for efficient neural coding is to match the range of cellular responses to the distribution of relevant input signals. However, the structure and relevance of sensory signals depend on behavioral state. Here, we show that behavior modifies neural activity at the earliest stages of fly vision. We describe a class of wide-field neurons that provide feedback to the most peripheral layer of the Drosophila visual system, the lamina. Using in vivo patch-clamp electrophysiology, we found that lamina wide-field neurons respond to low-frequency luminance fluctuations. Recordings in flying flies revealed that the gain and frequency tuning of wide-field neurons change during flight, and that these effects are mimicked by the neuromodulator octopamine. Genetically silencing wide-field neurons increased behavioral responses to slow-motion stimuli. Together, these findings identify a cell type that is gated by behavior to enhance neural coding by subtracting low-frequency signals from the inputs to motion detection circuits.

    View Publication Page
    05/05/14 | Direct observation of ON and OFF pathways in the Drosophila visual system.
    Strother JA, Nern A, Reiser MB
    Current Biology. 2014 May 5;24(9):976-83. doi: 10.1016/j.cub.2014.03.017

    Visual motion perception is critical to many animal behaviors, and flies have emerged as a powerful model system for exploring this fundamental neural computation. Although numerous studies have suggested that fly motion vision is governed by a simple neural circuit [1-3], the implementation of this circuit has remained mysterious for decades. Connectomics and neurogenetics have produced a surge in recent progress, and several studies have shown selectivity for light increments (ON) or decrements (OFF) in key elements associated with this circuit [4-7]. However, related studies have reached disparate conclusions about where this selectivity emerges and whether it plays a major role in motion vision [8-13]. To address these questions, we examined activity in the neuropil thought to be responsible for visual motion detection, the medulla, of Drosophila melanogaster in response to a range of visual stimuli using two-photon calcium imaging. We confirmed that the input neurons of the medulla, the LMCs, are not responsible for light-on and light-off selectivity. We then examined the pan-neural response of medulla neurons and found prominent selectivity for light-on and light-off in layers of the medulla associated with two anatomically derived pathways (L1/L2 associated) [14, 15]. We next examined the activity of prominent interneurons within each pathway (Mi1 and Tm1) and found that these neurons have corresponding selectivity for light-on or light-off. These results provide direct evidence that motion is computed in parallel light-on and light-off pathways, demonstrate that this selectivity emerges in neurons immediately downstream of the LMCs, and specify where crucial elements of motion computation occur.

    View Publication Page
    07/10/13 | Contributions of the 12 neuron classes in the fly lamina to motion vision.
    Tuthill JC, Nern A, Stephen L. Holtz , Rubin GM, Reiser MB
    Neuron. 07/2013;79:128-140. doi: http://dx.doi.org/10.1016/j.neuron.2013.05.024

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes.

    View Publication Page
    02/01/12 | Real neuroscience in virtual worlds.
    Dombeck DA, Reiser MB
    Current Opinion in Neurobiology. 2012 Feb;22(1):3-10. doi: 10.1016/j.conb.2011.10.015

    Virtual reality (VR) holds great promise as a tool to study the neural circuitry underlying animal behaviors. Here, we discuss the advantages of VR and the experimental paradigms and technologies that enable closed loop behavioral experiments. We review recent results from VR research in genetic model organisms where the potential combination of rich behaviors, genetic tools and cutting edge neural recording techniques are leading to breakthroughs in our understanding of the neural basis of behavior. We also discuss several key issues to consider when performing VR experiments and provide an outlook for the future of this exciting experimental toolkit.

    View Publication Page
    Zuker LabReiser Lab
    06/09/11 | Visual place learning in Drosophila melanogaster.
    Ofstad TA, Zuker CS, Reiser MB
    Nature. 2011 Jun 9;474(7350):204-7. doi: 10.1038/nature10131

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. The impressive navigational abilities of ants, bees, wasps and other insects demonstrate that insects are capable of visual place learning, but little is known about the underlying neural circuits that mediate these behaviours. Drosophila melanogaster (common fruit fly) is a powerful model organism for dissecting the neural circuitry underlying complex behaviours, from sensory perception to learning and memory. Drosophila can identify and remember visual features such as size, colour and contour orientation. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain, we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and establish Drosophila as a powerful model for the study of spatial memories.

    View Publication Page
    06/07/11 | Neural correlates of illusory motion perception in Drosophila.
    Tuthill JC, Chiappe ME, Reiser MB
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Jun 7;108:9685-90. doi: 10.1073/pnas.1100062108

    When the contrast of an image flickers as it moves, humans perceive an illusory reversal in the direction of motion. This classic illusion, called reverse-phi motion, has been well-characterized using psychophysics, and several models have been proposed to account for its effects. Here, we show that Drosophila melanogaster also respond behaviorally to the reverse-phi illusion and that the illusion is present in dendritic calcium signals of motion-sensitive neurons in the fly lobula plate. These results closely match the predictions of the predominant model of fly motion detection. However, high flicker rates cause an inversion of the reverse-phi behavioral response that is also present in calcium signals of lobula plate tangential cell dendrites but not predicted by the model. The fly’s behavioral and neural responses to the reverse-phi illusion reveal unexpected interactions between motion and flicker signals in the fly visual system and suggest that a similar correlation-based mechanism underlies visual motion detection across the animal kingdom.

    View Publication Page