Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Stringer Lab / Publications
general_search_page-panel_pane_1 | views_panes

35 Publications

Showing 21-30 of 35 results
10/05/22 | Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas.
Avitan L, Stringer C
Neuron. 2022 Oct 05;110(19):3064. doi: 10.1016/j.neuron.2022.06.019

Sensory areas are spontaneously active in the absence of sensory stimuli. This spontaneous activity has long been studied; however, its functional role remains largely unknown. Recent advances in technology, allowing large-scale neural recordings in the awake and behaving animal, have transformed our understanding of spontaneous activity. Studies using these recordings have discovered high-dimensional spontaneous activity patterns, correlation between spontaneous activity and behavior, and dissimilarity between spontaneous and sensory-driven activity patterns. These findings are supported by evidence from developing animals, where a transition toward these characteristics is observed as the circuit matures, as well as by evidence from mature animals across species. These newly revealed characteristics call for the formulation of a new role for spontaneous activity in neural sensory computation.

View Publication Page
07/27/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
Kevin J. Cutler , Carsen Stringer , Paul A. Wiggins , Joseph D. Mougous
bioRxiv. 2022 Jul 27:. doi: 10.1101/2021.11.03.467199

Advances in microscopy hold great promise for allowing quantitative and precise readouts of morphological and molecular phenomena at the single cell level in bacteria. However, the potential of this approach is ultimately limited by the availability of methods to perform unbiased cell segmentation, defined as the ability to faithfully identify cells independent of their morphology or optical characteristics. In this study, we present a new algorithm, Omnipose, which accurately segments samples that present significant challenges to current algorithms, including mixed bacterial cultures, antibiotic-treated cells, and cells of extended or branched morphology. We show that Omnipose achieves generality and performance beyond leading algorithms and its predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of the distance field. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism and on the segmentation of non-bacterial objects. Our results distinguish Omnipose as a uniquely powerful tool for answering diverse questions in bacterial cell biology.

View Publication Page
10/17/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation.
Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S, Wiggins PA, Mougous JD
Nature Methods. 2022 Oct 17:. doi: 10.1038/s41592-022-01639-4

Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.

View Publication Page
10/16/24 | Rastermap: a discovery method for neural population recordings
Carsen Stringer , Lin Zhong , Atika Syeda , Fengtong Du , Marius Pachitariu
Nat. Neurosci.. 2024 Oct 16:. doi: 10.1038/s41593-024-01783-4

Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers listening to spikes in real time and noticing patterns of activity related to ongoing stimuli or behaviors. With the advent of large-scale recordings, such close observation of data has become difficult. To find patterns in large-scale neural data, we developed 'Rastermap', a visualization method that displays neurons as a raster plot after sorting them along a one-dimensional axis based on their activity patterns. We benchmarked Rastermap on realistic simulations and then used it to explore recordings of tens of thousands of neurons from mouse cortex during spontaneous, stimulus-evoked and task-evoked epochs. We also applied Rastermap to whole-brain zebrafish recordings; to wide-field imaging data; to electrophysiological recordings in rat hippocampus, monkey frontal cortex and various cortical and subcortical regions in mice; and to artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.

View Publication Page
08/06/18 | Robustness of spike deconvolution for neuronal calcium imaging.
Pachitariu M, Stringer C, Harris KD
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 Aug 06;38(37):7976-85. doi: 10.1523/JNEUROSCI.3339-17.2018

Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology, and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on "zoomed out" datasets of ∼10,000 cell recordings from the visual cortex of mice of either sex. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks, while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND, due to its simplicity, efficiency and accuracy.The experimental method that currently allows for recordings of the largest numbers of cells simultaneously is two-photon calcium imaging. However, use of this powerful method requires that neuronal firing times be inferred correctly from the large resulting datasets. Previous studies have claimed that complex supervised learning algorithms outperform simple deconvolution methods at this task. Unfortunately, these studies suffered from several problems and biases. When we repeated the analysis, using the same data and correcting these problems, we found that simpler spike inference methods perform better. Even more importantly, we found that supervised learning methods can introduce artifactual structure into spike trains, that can in turn lead to erroneous scientific conclusions. Of the algorithms we evaluated, we found that an extremely simple method performed best in all circumstances tested, was much faster to run, and was insensitive to parameter choices, making incorrect scientific conclusions much less likely.

View Publication Page
10/06/20 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of chemical theory and computation;10:2658–2667
03/03/14 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of Chemical Theory and Computation. 03/2014;10:2658–2667. doi: https://doi.org/10.1021/ct401065r

Equilibrium formally can be represented as an ensemble of uncoupled systems undergoing unbiased dynamics in which detailed balance is maintained. Many nonequilibrium processes can be described by suitable subsets of the equilibrium ensemble. Here, we employ the “weighted ensemble” (WE) simulation protocol [Huber and Kim, Biophys. J.1996, 70, 97–110] to generate equilibrium trajectory ensembles and extract nonequilibrium subsets for computing kinetic quantities. States do not need to be chosen in advance. The procedure formally allows estimation of kinetic rates between arbitrary states chosen after the simulation, along with their equilibrium populations. We also describe a related history-dependent matrix procedure for estimating equilibrium and nonequilibrium observables when phase space has been divided into arbitrary non-Markovian regions, whether in WE or ordinary simulation. In this proof-of-principle study, these methods are successfully applied and validated on two molecular systems: explicitly solvated methane association and the implicitly solvated Ala4 peptide. We comment on challenges remaining in WE calculations.

 

View Publication Page
01/07/23 | Solving the spike sorting problem with Kilosort
Marius Pachitariu , Shashwat Sridhar , Carsen Stringer
bioRxiv. 2023 Jan 07:. doi: 10.1101/2023.01.07.523036

Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, complicated by the non-stationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To solve the spike sorting problem, we have continuously developed over the past eight years a framework known as Kilosort. This paper describes the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a new version with substantially improved performance due to new clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework which uses densely sampled electrical fields from real experiments to generate non-stationary spike waveforms and realistic noise. We find that nearly all versions of Kilosort outperform other algorithms on a variety of simulated conditions, and Kilosort4 performs best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

View Publication Page
06/05/24 | Spatial transcriptomics reveals human cortical layer and area specification
Qian X, Coleman K, Jiang S, Kriz AJ, Marciano JH, Luo C, Cai C, Manam MD, Caglayan E, Otani A, Ghosh U, Shao DD, Andersen RE, Neil JE, Johnson R, LeFevre A, Hecht JL, Miller MB, Sun L, Stringer C, Li M, Walsh CA
Nature. 2025 May 14:. doi: 10.1038/s41586-025-09010-1

The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.

 

Preprint: https://www.biorxiv.org/content/early/2024/06/10/2024.06.05.597673

View Publication Page
04/08/24 | Spike sorting with Kilosort4
Pachitariu M, Sridhar S, Pennington J, Stringer C
Nat Methods. 2024 Apr 08:. doi: 10.1038/s41592-024-02232-7

Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

View Publication Page