Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Truman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

88 Publications

Showing 11-20 of 88 results
Fetter LabTruman LabCardona Lab
12/11/18 | Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a feeding connectome.
Miroschnikow A, Schlegel P, Schoofs A, Hueckesfeld S, Li F, Schneider-Mizell CM, Fetter RD, Truman JW, Cardona A, Pankratz MJ
eLife. 2018 Dec 11;7:. doi: 10.7554/eLife.40247

We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior of larvae. Input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS. Output neurons consist of feeding motor, serotonergic modulatory and neuroendocrine neurons. Monosynaptic connections from a set of sensory synaptic compartments cover the motor, modulatory and neuroendocrine targets in overlapping domains. Polysynaptic routes are superimposed on top of monosynaptic connections, resulting in divergent sensory paths that converge on common outputs. A completely different set of sensory compartments is connected to the mushroom body calyx. The mushroom body output neurons are connected to interneurons that directly target the feeding output neurons. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.

View Publication Page
Zlatic LabTruman Lab
03/28/18 | Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
Humberg T, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG
Nature Communications. 2018 Mar 28;9(1):1260. doi: 10.1038/s41467-018-03520-5

To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.

View Publication Page
04/30/76 | Dendritic reorganization of an identified motoneuron during metamorphosis of the tobacco hornworm moth.
Truman JW, Reiss SE
Science. 1976 Apr 30;192(4238):477-9

In the tobacco hornworm, many larval motoneurons become respecified and supply new muscles in the adult. Changes in the morphology of one such neuron were examined through metamorphosis. The dendritic pattern of the adult comes about both by outgrowth from the primary and secondary branches of the larval neuron and by the development of new branches that are unique to the adult.

View Publication Page
10/01/04 | Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila.
Truman JW, Schuppe H, Shepherd D, Williams DW
Development. 2004 Oct;131(20):5167-84. doi: 10.1242/dev.01371

In Drosophila most thoracic neuroblasts have two neurogenic periods: an initial brief period during embryogenesis and a second prolonged phase during larval growth. This study focuses on the adult-specific neurons that are born primarily during the second phase of neurogenesis. The fasciculated neurites arising from each cluster of adult-specific neurons express the cell-adhesion protein Neurotactin and they make a complex scaffold of neurite bundles within the thoracic neuropils. Using MARCM clones, we identified the 24 lineages that make up the scaffold of a thoracic hemineuromere. Unlike the early-born neurons that are strikingly diverse in both form and function, the adult specific cells in a given lineage are remarkably similar and typically project to only one or two initial targets, which appear to be the bundled neurites from other lineages. Correlated changes in the contacts between the lineages in different segments suggest that these initial contacts have functional significance in terms of future synaptic partners. This paper provides an overall view of the initial connections that eventually lead to the complex connectivity of the bulk of the thoracic neurons.

View Publication Page
Truman LabRiddiford Lab
08/22/08 | Developmental model of static allometry in holometabolous insects.
Shingleton AW, Mirth CK, Bates PW
Proceedings of the Royal Society B: Biological Sciences. 2008 Aug 22;275(1645):1875-85. doi: 10.1098/rspb.2008.0227

The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the ’allometric coefficient’, is controlled by the relative sensitivity of an organ’s growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ’s final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

View Publication Page
10/15/19 | Developmental organization of central neurons in the adult Drosophila ventral nervous system.
Shepherd D, Sahota V, Court R, Williams DW, Truman JW
Journal of Comparative Neurology. 2019 Oct 15;527(15):2573-2598. doi: 10.1002/cne.24690

We have used MARCM to reveal the adult morphology of the post embryonically produced neurons in the thoracic neuromeres of the Drosophila VNS. The work builds on previous studies of the origins of the adult VNS neurons to describe the clonal organization of the adult VNS. We present data for 58 of 66 postembryonic thoracic lineages, excluding the motor neuron producing lineages (15 and 24) which have been described elsewhere. MARCM labels entire lineages but where both A and B hemilineages survive (e.g., lineages 19, 12, 13, 6, 1, 3, 8, and 11), the two hemilineages can be discriminated and we have described each hemilineage separately. Hemilineage morphology is described in relation to the known functional domains of the VNS neuropil and based on the anatomy we are able to assign broad functional roles for each hemilineage. The data show that in a thoracic hemineuromere, 16 hemilineages are primarily involved in controlling leg movements and walking, 9 are involved in the control of wing movements, and 10 interface between both leg and wing control. The data provide a baseline of understanding of the functional organization of the adult Drosophila VNS. By understanding the morphological organization of these neurons, we can begin to define and test the rules by which neuronal circuits are assembled during development and understand the functional logic and evolution of neuronal networks.

View Publication Page
Riddiford LabTruman Lab
10/01/97 | Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila.
McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW
Neuron. 1997 Oct;19(4):813-23

The neuropeptide eclosion hormone (EH) is a key regulator of insect ecdysis. We tested the role of the two EH-producing neurons in Drosophila by using an EH cell-specific enhancer to activate cell death genes reaper and head involution defective to ablate the EH cells. In the EH cell knockout flies, larval and adult ecdyses were disrupted, yet a third of the knockouts emerged as adults, demonstrating that EH has a significant but nonessential role in ecdysis. The EH cell knockouts had discrete behavioral deficits, including slow, uncoordinated eclosion and an insensitivity to ecdysis-triggering hormone. The knockouts lacked the lights-on eclosion response despite having a normal circadian eclosion rhythm. This study represents a novel approach to the dissection of neuropeptide regulation of a complex behavioral program.

View Publication Page
Fetter LabTruman LabZlatic LabCardona Lab
12/20/17 | Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila.
Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, Nose A
Neuron. 2017 Dec 20;96(6):1373-87. doi: 10.1016/j.neuron.2017.10.030

Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.

View Publication Page
Truman LabStern LabFly Functional Connectome
06/20/16 | Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song.
Shirangi TR, Wong AM, Truman JW, Stern DL
Developmental Cell. 2016 Jun 20;37(6):533-44. doi: 10.1016/j.devcel.2016.05.012

It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons—the TN1A neurons—that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization.

Doublesex-expressing TN1 neurons are necessary and sufficient for the male sine song•A subclass of TN1 neurons, TN1A, contributes to the sine song•TN1A neurons are functionally coupled to a sine song motoneuron, hg1Doublesex regulates the connectivity between the TN1A and hg1 neurons

It is unclear how developmental regulatory genes specify sex-specific behaviors. Shirangi et al. demonstrate that the Drosophila sexual differentiation gene doublesex encodes a sex-specific behavior—male song—by promoting the connectivity between the male-specific TN1A neurons and the sex-non-specific hg1 neurons, which are required for production of the song.

View Publication Page
06/01/98 | Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis.
Schubiger M, Wade AA, Carney GE, Truman JW, Bender M
Development. 1998 Jun;125(11):2053-62

During the metamorphic reorganization of the insect central nervous system, the steroid hormone 20-hydroxyecdysone induces a wide spectrum of cellular responses including neuronal proliferation, maturation, cell death and the remodeling of larval neurons into their adult forms. In Drosophila, expression of specific ecdysone receptor (EcR) isoforms has been correlated with particular responses, suggesting that different EcR isoforms may govern distinct steroid-induced responses in these cells. We have used imprecise excision of a P element to create EcR deletion mutants that remove the EcR-B promoter and therefore should lack EcR-B1 and EcR-B2 expression but retain EcR-A expression. Most of these EcR-B mutant animals show defects in larval molting, arresting at the boundaries between the three larval stages, while a smaller percentage of EcR-B mutants survive into the early stages of metamorphosis. Remodeling of larval neurons at metamorphosis begins with the pruning back of larval-specific dendrites and occurs as these cells are expressing high levels of EcR-B1 and little EcR-A. This pruning response is blocked in the EcR-B mutants despite the fact that adult-specific neurons, which normally express only EcR-A, can progress in their development. These observations support the hypothesis that different EcR isoforms control cell-type-specific responses during remodeling of the nervous system at metamorphosis.

View Publication Page